

Vascular Lab as a diagnostic tool for PAD

Richard F. Neville, MD

Associate Director, INOVA Heart and Vascular Institute Vice-Chairman, Department of Surgery Director of Vascular Services Clinical Professor, George Washington University Adjunct Professor, Biomedical Engineering, GMU

Peripheral Artery Disease

Bifurcation Turbulence Shear stress Increased particle residence time Endothelial injury

Peripheral Artery Disease

Symptomatic Disease 34%

Asymptomatic Disease 66%

Hiatt WR. N Engl J Med. 2001;344:1608-1621

Prevalence of PAD

- Over 9 million Americans have PAD
- One million new Medicare patients annually
- 30% over 70 years old have PAD
- Without proper treatment, are likely to die in 5 years
- Under-diagnosis of PAD
 - Patients "part of getting old"
 - Physicians "don't ask don't tell policy"
- Diabetes mellitus is exploding......350 million worldwide

IOF Diabetes Min., 1015

Increasing problem worldwide

Critical Limb Ischemia (CLI)

- "Condition in patients *without* diabetes with chronic ischemia as the major threat to a limb"
 - 1982, working group of the International Vascular Symposium
- Physiologic criteria
 - ABI <u>≤</u> 0.30
 - Absolute systolic blood pressure \leq 50 mm Hg at the ankle
 - Absolute systolic blood pressure ≤ 30 mm Hg at the toe
 - Calcified arteries
 - PVR waveform (ankle, foot, toe): $\leq 5 \text{ mm}$
 - PPG waveform (toe): $\leq 4 \text{ mm}$

Raines et al. Surg 1976; Vol 79, No.1:21-29 Carter et al. J Vasc Surg 1996;24:258-65

Definition of CLI

- Rutherford classification (1986, 1997)
 - CLI under categories 4-6
- TASC II (2008)
 - Chronic ischemic rest pain, ulcers or gangrene due to objectively proven PAD
 - AHA/ACC adopted TASC II definition in 2016
- Society of Vascular Surgery (2014)
 - Classification based on the wound, degree of ischemia, and foot infection (WIfI)

Gerhard-Herman MD, et al. J Am Coll Cardiol. 2016;doi:10.1016/j.jacc.2016.11.007. Hardman RL, et al. Semin Intervent Radiol. 2014;doi:10.1055/s-0034-1393976. Mills JL, et al. J Vasc Surg. 2014;doi:10.1016/j.jvs.2013.08.003

b, Estimate likelihood of benefit of/requirement for revascularization (assuming infection can be controlled first)

fI, foot Infection; I, Ischemia; W, Wound

t.

- Increase in wound class increases risk of amputation (based on PEDIS, UT, and other wound classification systems)
- PAD and infection are synergistic (Eurodiale); infected wound + PAD increases likelihood revascularization will be needed to heal wound
 Infection 3 category (systemic/metabolic instability): moderate to high-risk of
- amputation regardless of other factors (validated IDSA guidelines)

Four classes: for each box, group combination into one of these four classes

Very low = VL = clinical stage 1	
Low = L = clinical stage 2	
Moderate = M = clinical stage 3	
High = H = Jinical stage 4	
Clinical stage 5 would signify an unsalvageable foot	

Amputation

- 1.6 million live with limb loss
- This number may more than double to 3.6 million (2050)
- Regional variation in amputation rates and vascular care
- Post-amputation within 2 years Contralateral amputation – 30% Two year mortality – 30-50%

Republished from Schuyler-Jones W, et al. J Am Coll Cardiol. 2012;59;E1670, with permission from Elsevier.

J Vasc Surg. 2013 June ; 57(6): 1471–1480.e3. doi:10.1016/j.jvs.2012.11.068.

Mortality

Outcomes of Patients with CLI

TASC II. (2007). JOURNAL OF VASCULAR SURGERY Volume 45, Number 1, Supplement S

Diagnostic assessment

- History
 - Risk factors
 - Symptoms at presentation
- Physical Exam
- Noninvasive vascular testing
- Arterial imaging
 - Arteriography
 - MRA
 - CTA

Non-invasive Vascular Lab

- ABI
- Segmental waveforms
- Segmental pressures
- Pulse Volume Recordings
- Digital pressures
- Duplex imaging
- Tissue perfusion
 - TcO2
 - Skin perfusion pressure
 - Photoplethysmography
 - Hyperspectral imaging

Ankle-Brachial Index

- Vascular "EKG"
 - Brachial blood pressure
 - DP / PT blood pressure
 - Calculate ABI
 - DP-PT/Brachial ratio
- Falsely elevated in diabetics

Normal	>0.9
Claudication	0.5 – 0.8
Rest pain	< 0.5
Critical ischer	mia < 0.3

Diagnostic Test	Sensitivity, %	Specificity, %
Pap smear	30-87	86-100
Fecal occult blood test	37-78	87-98
Mammography	75-90	90-95
ABI	95	99

AMA Archives of Internal Medicine Vol. 163. Apr 28, 2003

Segmental pressures/waveforms

Segmental waveforms

•

1

- 1 Systolic upstroke
- 2 Peak systolic pressure
- 3 Late systolic decline with slowing forward movement
- 4 Dicrotic notch related to the aortic valve closure
- 5 Diastolic runoff
- 6 End-diastolic pressure.

Pulse Volume Recordings

- Measure change in volume
- Amplitude < 15mm
 - Ischemia
- Amplitude < 5mm
 - Non-healing

Normal characteristics

Mild obstruction

Moderate obstruction

Severe obstruction or occlusion

Photoplethysmography: Toe pressures

- Reflection of light in microcirculation
- Toe pressures
 - Toe Brachial index (> 0.4)
- Non-healing < 30-40 mmHg

Arterial Study

Duplex images

- Duplex
 - B mode images
 - Velocity data
- Advantages
 - Noninvasive
 - Available
 - Anatomic
- Disadvantages
 - Labor intensive
 - Technician dependent
 - Best for focal disease

Tests for tissue perfusion

- Toe pressures / TBI
- Tc02
- Skin perfusion pressure
- Hyperspectral imaging
- SPY Elite camera

Transcutaneous Oxygen

- Healing potential and tissue perfusion
- Values measured at foot and chest wall
- Non-healing
 - Value < 20-30 mmHg</p>
 - Chest foot index < 0.4
- TcO2 peaks two to four weeks after revascularization

Caselli A, et al Diabetic Med 2005;22(4):460-465

Skin perfusion pressure (SPP)

- Laser Doppler technology
 - Laser signal below skin surface (1.5mm)
 - Measures blood flow to capillary/tissue
- Pressure cuff occludes capillary flow
- System performs a controlled release of pressure
- Laser uses the Doppler "shift effect" of capillary flow return
- Automatically calculates the <u>Skin Perfusion Pressure</u> the pressure at which blood flow first returns to the capillaries

Wound Healing Potential

- SPP diagnoses CLI with > 80% accuracy
- SPP < 50mmHg = CLI in dialysis patients
- $\leq 30 \text{ mmHg} 80\%$ wound healing failure rate
- > 30 mmHg predictor of wound healing

Castronuovo, et al. J. Vasc. Surg. 1997, 26, 629-637. Okamoto, et al. American Journal of Kidney Diseases. 2006;48(2):269-276.

Hyperspectral imaging

Measures the functional capacity of tissue to process oxygen

Hyperspectral imaging process

Hyperspectral analysis

- Oxyhemoglobin low
- DeOxy low
- O2 Sat low relative to the normal population values
- Results consistent with decreased perfusion

Value	Observed	Normal Mean	Std. Dev.
Оху	19	38	18
DeOxy	28	40	12
O2 Sat	40	48	10

Other systems to assess tissue perfusion

Who needs further arterial imaging?

- Functional ischemia
 - Disabling claudication
 - Severe ischemia on noninvasive testing
- Limb threatening ischemia
 - Rest pain
 - Tissue loss

Arterial imaging: CT angiography

- Advantages
 - No arterial puncture
 - 3D reconstruction
 - Shows calcium
- Disadvantages
 - Use of contrast
 - Timing of bolus
 - Images impeded by calcium

Arterial imaging: MR angiography

- Flow dependent
- Poor distal image quality
- Overestimate stenosis
- Time to acquire images

Arteriography still important

- Plan revascularization
- Rarely diagnostic
- Complications
 - Nephrotoxic dye
 - Bleeding
 - AV fistula
 - Pseudoaneurysm
- Distal tibial occlusive disease
- Limb Center
 - 533 initial diagnostic
 - 276 primary interventions

Role of the Non-invasive Vascular Lab

- Role of Vascular lab
 - Screening
 - Determine need for further imaging and intervention
 - Determine success of therapy
 - Medical
 - Endovascular
 - Surgical
 - Follow up revascularization procedures
- Vascular lab in a CLI practice
 - Is there adequate <u>perfusion</u> for a wound to heal?
 - <u>Has the intervention</u> provided adequate perfusion for healing?
 - Is <u>perfusion maintained</u> or is a re-intervention required?

Thank you

