# **Acute Heart Failure 2019**

Michael Felker, MD, MHS, FACC, FAHA, FHFSA Professor of Medicine Chief, Heart Failure Section Duke University School of Medicine

@DukeHFDoc y



Duke Clinical Research Institute

FROM THOUGHT LEADERSHIP TO CLINICAL PRACTICE



- Employment: Duke University
- <u>Grant Support</u>: NHLBI, American Heart Association, Novartis, Amgen, Merck, Roche Diagnostics, Cytokinetics
- <u>Consulting</u>: Novartis, Amgen, Roche Diagnostics, Medtronic, BMS, GSK, Cytokinetics, EBR Systems, Abbott, Cardionomic, SC Pharma, Innolife, V-Wave, LivaNova, Alnylam
- Journals: Associate Editor, JACC: Heart Failure





### **Does Acute Heart Failure = Hospitalization for Heart Failure?**

- "Acute heart failure" is often not really acute
- Worsening heart failure can occur in both inpatient and outpatient settings
- This concept often conflates a clinical/biological process (worsening of heart failure) and a location of care (the hospital)



# **Goals of Care in Patients Hospitalized with HF**

- Symptom relief
- Stabilize in-hospital course
- Optimize ICU/hospital length of stay
- Prevent in-hospital mortality
- Optimize chronic care
- Prevent post discharge events (death/rehosp)





## AHF Pathophysiology Remains Complex and Poorly Understood



# **Current Treatments of HHF**





## **Loop Diuretics in Heart Failure**





**Duke** Clinical Research Institute

Ellison D & Felker, GM. NEJM 2017



# Secondary Endpoints: Low vs. High

|                                                 | Low      | High     | P value |
|-------------------------------------------------|----------|----------|---------|
| Dyspnea VAS AUC at 72 hours                     | 4478     | 4668     | 0.041   |
| % free from congestion at 72 hrs                | 11%      | 18%      | 0.091   |
| Change in weight at 72 hrs                      | -6.1 lbs | -8.7 lbs | 0.011   |
| Net volume loss at 72 hrs                       | 3575 mL  | 4899 mL  | 0.001   |
| Change in NTproBNP at 72 hrs<br>(pg/mL)         | -1194    | -1882    | 0.06    |
| % Treatment failure                             | 37%      | 40%      | 0.56    |
| % with Cr increase > 0.3 mg/dL<br>within 72 hrs | 14%      | 23%      | 0.041   |
| Length of stay, days (median)                   | 6        | 5        | 0.55    |
|                                                 |          |          |         |

Felker GM et al, NEJM 2011



ORIGINAL ARTICLE

### Effect of Nesiritide in Patients with Acute Decompensated Heart Failure





O'Connor CM et al, NEJM 2011



### **Inotropic Therapy for HF: ALARM Registry**





**Duke** Clinical Research Institute

Mebazza, A et al. Int Care Med 2011



### **In-hospital Adverse Events**





Cuffe MS et al. JAMA. 2002;287:1541-1547.





# **RELAX-AHF-2: CV mortality**



Teerlink, Metra, HFA 2017



#### ORIGINAL ARTICLE



Packer M et al NEJM 2017









JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY © 2016 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER

## Acute Treatment With Omecamtiv Mecarbil to Increase Contractility in Acute Heart Failure





Systolic ejection time increased as corresponding plasma omecamtiv mecarbil concentrations rose in 89 subjects from the echocardiographic substudy. **Solid line** = linear regression; **dashed lines** = 95% confidence interval.



Teerlink, J.R. et al. J Am Coll Cardiol. 2016; 67(12):1444-55.

#### **Teerlink et al JACC 2016**



**Duke** Clinical Research Institute

### Nitroxyl (HNO): Mechanism of Action

#### Enhances contractility and relaxation by

- Increase in calcium release from ryanodine receptors<sup>1</sup>
- Increase in sarcoplasmic reticulum (SR) calcium uptake due to activation of SERCA2A and PLB<sup>2,5,6</sup>
- Increase in myofilament sensitivity (actin, MLC, and tropomyosin)<sup>3,4</sup>
- No effect on L-type calcium channels

#### Vasodilation by

• Activation of soluble guanylate cyclase



## Improved calcium cycling efficiency & increased myofilament sensitivity

#### **References:**

1.Kohr, et al., Front Biosci, 20094. Murray et al., JMCC, 20092.Tocchetti, et al., Circ Res, 20075. Froehlich, et al., Biochem, 20083.Dai, et al., J Physiol, 20076. Lancel, et al., Circ Res, 2009



## What are the Hemodynamic "Buttons" We can Push?

#### **BMS-986231**

- Improve contractility (inotropy)
- Improve relaxation/filling (lusitropy)
- Optimize loading conditions
  - Preload

Duke Clinical Research Institute

Afterload

Can we demonstrate that these mechanisms are operative in patients with heart failure?



# **STAND UP AHF: Study Design**

CV013-011





Felker et al EJHF in press



# **PIONEER HF:** In-Hospital Initiation of Sacubitril/Valsartan







## Conclusions

- HHF is a highly symptomatic and morbid condition
- Standard of care therapy (diuretics) improve resting symptoms in most patients if dosed adequately
- Novel therapies to date without clear benefit
- In hospital optimization of GDMT (including ARNi) improves outcomes
- More to do!

