#### **Cardiogenic Shock** Heart Team Approach to Management



Behnam N. Tehrani, M.D. FSCAI Co-Director, Cardiac Catheterization Laboratories INOVA Heart and Vascular Institute





#### **Disclosures**

• Consultant: Medtronic, Abiomed



#### **Overview – Nearly Two Decades of Poor Outcomes**





## Proverbial "Death Spiral" of CS



Van Diepen et al. *Circulation* 2017;136:e232-e268

Heart and Vascular Institute

## Scope of Problem - High Morbidity and Mortality

#### Lifeline STEMI Systems Accelerator Project

| <b>TABLE 2</b> In-Hospital Outcomes Stratified by CS |             |            |         |  |  |
|------------------------------------------------------|-------------|------------|---------|--|--|
|                                                      | No-CS       | CS         | p Value |  |  |
| Post-admission reinfarction                          | 0.9 (184)   | 1.3 (25)   | <0.001  |  |  |
| Heart failure at discharge                           | 5.4 (1,184) | 15.3 (303) | <0.001  |  |  |
| Bleeding event                                       | 3.7 (802)   | 11.0 (218) | <0.001  |  |  |
| Stroke                                               | 0.6 (137)   | 2.5 (49)   | <0.001  |  |  |
| Mortality                                            | 3.5 (754)   | 34.4 (686) | <0.001  |  |  |
| Values are % (n).<br>CS = cardiogenic shock.         |             |            |         |  |  |

Heart and Vascular Institute

Kochar A et al. JACC Cardiovascular Interventions 2018; 11(18):1824-1833

### Scope of Problem: End-Organ Failure



Heart and Vascular Institute

Vallabhajosyula S et al. JACC 2019;73:1781-91

### Scope of Problem – Practice Variations

| Procedure                                | Quartile 1<br>(N=937) | Quartile 2<br>(N=3328) | Quartile 3<br>(N=3284) | Quartile 4<br>(N=1580) | P Value* |
|------------------------------------------|-----------------------|------------------------|------------------------|------------------------|----------|
| Coronary angiography—n (%)               | 440 (47.0)            | 1852 (55.6)            | 2132 (65.0)            | 1165 (73.7)            | <0.001   |
| Percutaneous coronary intervention—n (%) | 335 (35.8)            | 1256 (37.8)            | 1448 (44.1)            | 822 (52.0)             | <0.001   |
| Coronary artery bypass grafting—n (%)    | 38 (4.1)              | 446 (13.4)             | 545 (16.6)             | 309 (19.6)             | <0.001   |
| Total revascularization—n (%)            | 373 (39.8)            | 1702 (51.1)            | 1993 (60.7)            | 1131 (71.6)            | <0.001   |
| Right heart catheterization—n (%)        | 13 (1.4)              | 126 (3.8)              | 143 (4.4)              | 93 (5.9)               | <0.001   |

| Procedure                      | Quartile 1<br>(N=937) | Quartile 2<br>(N=3328) | Quartile 3<br>(N=3284) | Quartile 4<br>(N=1580) | P Value* |
|--------------------------------|-----------------------|------------------------|------------------------|------------------------|----------|
| ND-MCS (percutaneous)—n (%)    | 0.0 (0.0)             | 82 (2.5)               | 160 (4.9)              | 110 (6.7)              | < 0.001  |
| ND-MCS (nonpercutaneous)—n (%) | 0 (0.0)               | +                      | +                      | +                      | 0.51     |
| IABP—n (%)                     | 0 (0.0)               | 628 (18.9)             | 1234 (37.6)            | 946 (59.9)             | < 0.001  |
| ECMO—n (%)                     | 0 (0.0)               | 48 (1.4)               | 50 (1.5)               | 35 (2.2)               | < 0.001  |
| PCPS—n (%)                     | 0 (0.0)               | +                      | +                      | +                      | 0.72     |



Strom JB et al. Circulation Cardiovascular Interventions 2019

## **Current State:** Spectrum of Acute MCS



Kapur et al F1000 Research 2017



## IABP- Minimal Hemodynamic & No Mortality Benefit



#### Table 1. Clinical Outcomes at 6 Years

| Variable                                            | Intraaortic Balloon<br>Pump (n=297) | Control<br>(n=294)           | Relative Risk<br>(95% Cl) | P Value |  |  |
|-----------------------------------------------------|-------------------------------------|------------------------------|---------------------------|---------|--|--|
| All-cause mortality                                 | 197/297 (66.3)                      | 197/294 <mark>(</mark> 67.0) | 0.99 (0.88–1.11)          | 0.98    |  |  |
| Events in 6-year survivors                          |                                     |                              |                           |         |  |  |
| Reinfarction                                        | 9/100 (9.0)                         | 7/97 (7.2)                   | 1.25 (0.48–3.22)          | 0.65    |  |  |
| Stroke                                              | 1/100 (1.0)                         | 6/97 (6.2)                   | 0.16 (0.02–1.32)          | 0.06    |  |  |
| Recurrent revascularization                         | 26/100 (26.0)                       | 31/97 (32.0)                 | 0.81 (0.52–1.26)          | 0.36    |  |  |
| Repeat percutaneous coronary intervention           | 18/100 (18.0)                       | 26/97 (26.8)                 | 0.67 (0.39–1.14)          | 0.14    |  |  |
| Additional coronary artery bypass grafting          | 8/100 (8.0)                         | 7/97 (7.2)                   | 1.11 (0.42–2.94)          | 0.84    |  |  |
| Implantable cardioverter defibrillator implantation | 13/100 (13.0)                       | 15/97 (15.5)                 | 0.84 (0.42–1.67)          | 0.62    |  |  |



Thiele H et al. Circulation 2018

### **LV-Aortic Axial Flow: Impella**



Heart and Vascular Institute

Burkhoff et al. JACC 2015; 66(23): 2664-74

#### D2U vs D2B



Heart and Vascular Institute

#### VA-ECMO

• Implemenation of 2018 UNOS donor allocation system : priority determined primarily by hemodynamic status – priority given to pts on ECMO.







Guglin M et al. JACC 2019;73(6):698-716

#### VA-ECMO



Guglin M et al. JACC 2019;73(6):698-716

Heart and Vascular Institute

#### **Hemodynamic Support Equation**



Heart and Vascular Institute

#### VA-ECMO - LV Venting





A, LV volume and pressure increases. B, Aortic pressure (AOP) and left atrial pressure (LAP) increase. C, Right atrial pressure (RAP) decreases. D, Pressure-volume loops generated during acute cardiogenic shock and VA-ECMO at increasing flow rates. With increasing ECMO flow rates, aortic pressure and afterload (slope of the arterial elastance and end-systolic pressure increase). There is a concomitant decrease in stroke volume (represented by the width of the pressure-volume loop) and an increase in LV volume (LV distention) and LAP. As stroke volume approaches zero, this would clinically correspond to the aortic valve remaining closed throughout the cardiac cycle.

Rao P et al. Circ Heart Fail 2018;11:e004905



#### VA-ECMO - LV Venting

|                         | Unloading No Unloading |            |             |            | Unloading No Unloading Risk Ratio |                                       | Risk Ratio |
|-------------------------|------------------------|------------|-------------|------------|-----------------------------------|---------------------------------------|------------|
| Study or Subgroup       | Events                 | Total      | Events      | Total      | Weight                            | Mantel-Haenszel, Random, 95% CI       |            |
| 1.1.1 Intra-Aortic Ball | oon Pump               | ,          |             |            |                                   |                                       |            |
| Aoyama, 2014            | 22                     | 35         | 2           | 3          | 1.2%                              | · · · · · · · · · · · · · · · · · · · |            |
| Aso, 2016               | 330                    | 604        | 708         | 1,046      | 14.3%                             | -                                     |            |
| Brechot, 2018           | 45                     | 104        | 92          | 155        | 7.5%                              |                                       |            |
| Doll, 2004              | 105                    | 143        | 62          | 76         | 11.7%                             | +                                     |            |
| Kai Chen, 2018          | 17                     | 38         | 17          | 22         | 3.9%                              |                                       |            |
| Lin, 2016               | 144                    | 302        | 110         | 227        | 10.3%                             |                                       |            |
| Overtchouk, 2018        | 33                     | 63         | 34          | 43         | 6.7%                              |                                       |            |
| Park, 2014              | 21                     | 41         | 30          | 55         | 4.5%                              |                                       |            |
| Ro, 2014                | 41                     | 60         | 139         | 193        | 9.7%                              | -                                     |            |
| Sakamoto, 2012          | 62                     | 94         | 4           | 4          | 5.6%                              |                                       |            |
| Tepper, 2018            | 15                     | 30         | 22          | 30         | 3.9%                              |                                       |            |
| Wang, 2013              | 13                     | 41         | 31          | 46         | 3.0%                              |                                       |            |
| Subtotal (95% CI)       |                        | 1,555      |             | 1,900      | 82.3%                             |                                       |            |
| Total events            | 848                    |            | 1,251       |            |                                   |                                       |            |
| 1.1.2 Percutaneous L    | eft-Ventri             | cular Sup  | port        |            |                                   |                                       |            |
| Akanni, 2018            | 16                     | 29         | 100         | 196        | 5.0%                              |                                       |            |
| Pappalardo, 2017        | 16                     | 34         | 98          | 123        | 4.7%                              | 1                                     |            |
| Patel, 2018             | 17                     | 30         | 28          | 36         | 4.9%                              |                                       |            |
| Subtotal (95% CI)       |                        | 93         |             | 355        | 14.6%                             | -                                     |            |
| Total events            | 49                     |            | 226         |            |                                   |                                       |            |
| 1.1.3 Right Upper Pul   | monary V               | ein or Tra | insseptal I | Left Atria | l Cannula                         |                                       |            |
| Poptsov, 2014           | 2                      | 28         | 6           | 18         | 0.4%                              |                                       |            |
| Shmack, 2017            | 9                      | 20         | 21          | 28         | 2.7%                              |                                       |            |
| Subtotal (95% CI)       |                        | 48         |             | 46         | 3.1%                              |                                       |            |
| Total events            | 11                     |            | 27          |            |                                   |                                       |            |
| Total (95% CI)          |                        | 1.696      |             | 2,301      | 100.0%                            |                                       |            |
| Total events            | 908                    | 1000       | 1,504       | 2,501      |                                   |                                       |            |
| iotal events            | 508                    |            | 1,504       |            |                                   |                                       |            |
|                         |                        |            |             |            |                                   | 0.1 0.2 0.5 1 2 5 10                  |            |
|                         |                        |            |             |            |                                   | Favors Favors                         |            |
|                         |                        |            |             |            |                                   | Unloading Not Unloading               |            |

#### Russo, J.J. et al. J Am Coll Cardiol. 2019;73(6):654-62.

The association between left ventricular unloading during VA-ECMO for cardiogenic shock and all-cause mortality was assessed before and after stratification by left ventricular unloading strategy (IABP, pVAD, or RUPV or trans-septal left atrial cannula). The Mantel-Haenszel method was used to examine the overall risk ratio associated with left ventricular unloading during VA-ECMO using a random effects model. Left ventricular unloading during VA-ECMO for cardiogenic shock was associated with reduced mortality (RR: 0.79; 95% CI: 0.72 to 0.87; p < 0.00001). There was no heterogeneity in this association in relation to the specific left ventricular unloading strategy used (p = 0.47). CI = confidence interval; IABP = intra-aortic balloon pump; LA = left atrial; pVAD = percutaneous ventricular assist device; RR = relative risk; RUPV = right upper pulmonary vei; VA-ECMO = venoarterial extracorporeal membrane oxygenation.

#### Russo JJ et al. JACC 2019;73:654-62

# Mortality: 54% (LV vent) vs 65% (no LV vent)

#### HR 0.79, 95% CI (0.72-0.87)

#### p < 0.00001



### **Shock Algorithms**

#### • A) Rationale

- Complexity of care
- Too much practice variation.
- No RCT's to guide management
- Clinical Precedent
- B) Actions to Develop Shock Team
  - Team Members
  - Standardized Protocol
  - Hub-and-Spoke Model

#### • C) Improve Outcomes

- Enhanced Disease Recognition
- Appropriate revascularization and utilization of MCS

#### CATHETERIZATION CARDIOVASCULAR INTERVENTIONS

Explore this journal >

**Coronary Artery Disease** 

#### A team-based approach to patients in cardiogenic shock

Jacob A. Doll MD 🔄, E. Magnus Ohman MD, Manesh R. Patel MD, Carmelo A. Milano MD, Joseph G. Rogers MD, David H. Wohns MD, Navin K. Kapur MD, Sunil V. Rao MD

First published: 3 November 2015 Full publication history



Doll J et al. Catheterization & Cardiovascular Intervention 2015;88:424-33

#### **Cardiac Shock Care Centers**



Rab T et al. JACC 2018; 72(16):1972-80

Heart and Vascular Institute

INOVA

## **Timeline of IHVI Heart Recovery Initiative**





## **INOVA Heart Recovery Initiative**



Schematic representation of the care pathways in the upstream and critical care management of patients with acute myocardial infarction (AMI) and acute decompensated heart failure (ADHF) cardiogenic shock at the INOVA Heart and Vascular Institute. CPO = [mean arterial pressure x cardiac output]/451; PAPI = [systolic pulmonary arterial pressure - diastolic pulmonary arterial pressure]/right atrial pressure.



#### **INOVA Heart Recovery Initiative:** CICU Management

#### **Cardiogenic Shock Team Management**

Call 703-776-5905 to activate Heart Team

#### Serial Assessment q4hr x 24hrs

- Lactate
- Fick CO/CI

INOVA HEART AND

- CPO and PAPi
- Continuous hemodynamics

#### and if PMCS:

- LDH & Haptoglobin
- Neurovascular checks
- Limited Echo daily
- IVF to keep RA >10, PCWP >12

#### \*Criteria for Refractory Shock

- Lactate > 3
- UOP < 30cc/hr</li>
- CPO < 0.6</li>
- Increasing pressor requirement
- Evidence of organ hypo-perfusion

#### **Criteria for RV Dysfunction**

- PAPi < 1.0</li>
- RA > 15mmHg
- RA/PCWP ratio > 0.63

 $CPO = MAP \times CO/451$ PAPi = (sPAP-dPAP)/RA

TH+ **Bi-Pella** Oxygenator or or TH/Protek-VA-ECMO +



**Cardiogenic Shock Management in the CICU** 



### Improvement in CS survival: IHVI 2 year outcomes



Heart and Vascular Institute

### **IHVI Heart Recovery Initiative:** Impact of time to MCS





## **IHVI Cardiogenic Shock Risk Stratification Score**





## **IHVI Cardiogenic Shock "Hub-and-Spoke" Network**





Figure 3. Proposed regional system of care for cardiogenic shock.

Heart and Vascular Institute

Van Diepen et al. Circulation 2017;136:e232-e268

## **Conclusions**

- Cardiogenic shock is a multifactorial and hemodynamically complex syndrome with high morbidity/mortality.
- Few evidence based interventions known to clearly impact patient survival
- A standardized, team-based approach significantly improves survival in CS
- IHVI Pathway in the management of CS:
  - One-call access
  - Multidisciplinary Heart Team
  - Treatment protocols and validated risk scores
  - Regional destination center utilizing a hub-and-spoke model



## **Thank You**

| Name                        | Department                        | Job Title                                                                                    |
|-----------------------------|-----------------------------------|----------------------------------------------------------------------------------------------|
| Christopher M. O'Connor, MD | IHVI                              | Chief Executive Officer                                                                      |
| Christopher deFilippi, MD   | IHVI                              | Vice Chair, Academic Affairs                                                                 |
| Wayne Batchelor, MD         | Interventional Cardiology         | System Director, Interventional Heart Program                                                |
| Charles Murphy, MD          | IHVI Critical Care                | Chief Safety Officer, Director CVICU                                                         |
| Shashank Desai, MD, MBA     | Advanced Heart Failure/Transplant | Director of AHF/Transplant                                                                   |
| Behnam Tehrani, MD          | Interventional Cardiology         | Co-Director, Cardiac catheterization lab<br>Co-Director, Cardiogenic Shock Team              |
| Alexander Truesdell, MD     | Interventional Cardiology         | Co-director, Cardiogenic Shock Team                                                          |
| Shashank Sinha, MD, MSc     | Advanced Heart Failure/Transplant | Medical Director, Cardiac Intensive Care Unit<br>Director, CV Critical Care Research Program |
| Ramesh Singh MD             | Cardiac Surgery                   | Surgical Director, Mechanical Circulatory Support                                            |
| Carolyn Rosner, NP          | Cardiac Research                  | Nurse Practitioner, IHVI programs                                                            |
| Matthew Sherwood, MD        | Interventional Cardiology         | Co-Director, Cardiac catheterization lab<br>Co-Director, Structural Heart Program            |
| Kelly Epps, MD              | Interventional Cardiology         | Director, IHVI Women's Cardiovascular Program                                                |
| Henry Tran, MD              | Cardiology                        | Associate Director, Cardiology Fellowship                                                    |
| Mehul Desai, MD             | Medical Critical Care Services    | Critical Care Attending MD                                                                   |
| Glenn Druckenbrod, MD       | Emergency Room                    | Medical Director, Emergency Room                                                             |
| Aaron Bagnola, PharmD, BCPS | Pharmacy                          | Cardiology Specialty Pharmacist                                                              |

