Is TAVR Ready for All Patients with Aortic Valve Disease?

Matthew W. Sherwood, MD, MHS Co-director Structural Heart Program Co-director Cardiac Catheterization Lab Inova Heart and Vascular Institute

Modest Consulting fees: Janssen, Medtronic

 Discuss current indications for TAVR – Those with proven benefit

Highlight New Randomized Trial Data

Identify Future Studies/Indications + Next Frontiers

Choice of TAVR Versus Surgical AVR in the Patient With Severe Symptomatic AS (Modified)

Helping Cardiovascular Professionals Learn. Advance. Heal.

TAVR is Beneficial to Many Patients

 TAVR reduces mortality in patients at extreme risk or unable to have conventional surgery

 TAVR is noninferior to surgery in patients at high risk

 TAVR is noninferior and in some cases superior to surgery in intermediate risk patients

Potential Advantages of TAVR

 Less Invasive, lower risk of bleeding

 Shorter Length of Stay and Recovery

 Similar rates of mortality and stroke (based on High/Intermediate risk trials)

Concerns about TAVR in Low Risk Pts

Paravalvular leak and pacemaker risk

Valve Performance and Longevity

Anatomic Considerations (i.e. Bicuspid AoV etc.)

Young pts likely to need multiple AVRs

Device Evolution

- New generation devices are safer and more effective
- Less pacemaker and paravalvular leak
- Smaller profile and sheath size

Figure 1. Sapien valve (A); Sapien XT valve (B); Sapien 3 valve (C); Centera valve (Edwards Lifesciences) (D).

PARTNER 3 Study Design

Symptomatic Severe Aortic Stenosis

Composite of all-cause mortality, stroke, or CV re-hospitalization at 1 year post-procedure

% or mean ± SD

Demographics & Vascular Disease	TAVR (N=496)	Surgery (N=454)	Other Co-Morbidities	TAVR (N=496)	Surgery (N=454)
Age (years)	73.3 ± 5.8	73.6 ± 6.1	Diabetes	31.3%	30.2%
Male	67.5%	71.1%	COPD (any)	5.1%	6.2%
BMI – kg/m²	30.7 ± 5.5	30.3 ± 5.1	Pulmonary Hypertension	4.6%	5.3%
STS Score	1.9 ± 0.7	1.9 ± 0.6	Creatinine > 2mg/dL	0.2%	0.2%
NYHA Class III or IV*	31.3%	23.8%	Frailty (overall; > 2/4+)	0	0
Coronary Disease	27.7%	28.0%	Atrial Fibrillation (h/o)	15.7%	18.8%
Prior CABG	3.0%	1.8%	Permanent Pacemaker	2.4%	2.9%
Prior CVA	3.4%	5.1%	Left Bundle Branch Block	3.0%	3.3%
Peripheral Vascular Disease	6.9%	7.3%	Right Bundle Branch Block	10.3%	13.7%

*p = 0.01

Primary Endpoint

PARTNER 3

TRIAL

Rehospitalization

PARTNER 3

Other Secondary Endpoints

	30 Days			1 Year		
Outcomes % (no. of pts)	TAVR (N=496)	Surgery (N=454)	P-value	TAVR (N=496)	Surgery (N=454)	P-value
Bleeding - Life-threat/Major	3.6% (18)	24.5% (111)	<0.001	7.7% (38)	25.9% (117)	<0.001
Major Vascular Complics	2.2% (11)	1.5% (7)	0.45	2.8% (14)	1.5% (7)	0.19
AKI - stage 2 or 3*	0.4% (2)	1.8% (8)	0.05	0.4% (2)	1.8% (8)	0.05
New PPM (incl baseline)	6.5% (32)	4.0% (18)	0.09	7.3% (36)	5.4% (24)	0.21
New LBBB	22.0% (106)	8.0% (35)	<0.001	23.7% (114)	8.0% (35)	<0.001
Coronary Obstruction	0.2% (1)	0.7% (3)	0.28	0.2% (1)	0.7% (3)	0.28
AV Re-intervention	0% (0)	0% (0)	NA	0.6% (3)	0.5% (2)	0.76
Endocarditis	0% (0)	0.2% (1)	0.29	0.2% (1)	0.5% (2)	0.49
Asymp Valve Thrombosis	0.2% (1)	0% (0)	0.34	1.0% (5)	0.2% (1)	0.13

Event rates are KM estimates (%) and p-values are based on Log-Rank test * Event rates are incidence rates and p-value is Fisher's Exact test

PARTNER 3

The PARTNER 3 Trial Clinical Implications

- Based upon these findings, TAVR, through 1-year, should be considered the preferred therapy in low surgical risk aortic stenosis patients!
- PARTNER randomized trials over the past 12 years, clearly indicate that the relative value of TAVR compared with surgery is independent of surgical risk profiles.
- The choice of TAVR vs. surgery in aortic stenosis patients should be a shared-decision making process, respecting patient preferences, understanding knowledge gaps (esp. in younger patients), and considering clinical and anatomic factors.

Baseline Characteristics

l	Ev	olu	ıť"		
	_0	w	Ri	isk	
		all	-		_

Mean ± SD or %	TAVR (N=725)	SAVR (N=678)
Age, years	74.1 ± 5.8	73.6 ± 5.9
Female sex	36.0	33.8
Body surface area, m ²	2.0 ± 0.2	2.0 ± 0.2
STS PROM, %	1.9 ± 0.7	1.9 ± 0.7
NYHA Class III or IV	25.1	28.5
Hypertension	84.8	82.6
Chronic lung disease (COPD)	15.0	18.0
Cerebrovascular disease	10.2	11.8
Peripheral arterial disease	7.5	8.3

There are no significant differences between groups.

Primary Endpoint All-Cause Mortality or Disabling Stroke at 2 Years

Evolut[™] Low Risk Trial

K-M Disabling Stroke at 1 Year

Evolut" Low Risk Trial

K-M Heart Failure Hospitalization at 1 Year

Evolut" Low Risk Trial

Clinical Outcomes at 30 Days

Evolut	t"
	link
LOW	lisk
Trial	_

Bayesian rates as %	TAVR (N=725)	SAVR (N=678)	(95% BCI for Difference)
30-Day composite safety endpoint*	5.3	10.7	(-8.3, -2.6)
All-cause mortality	0.5	1.3	(-1.9, 0.2)
Disabling stroke*	0.5	1.7	(-2.4, -0.2)
Life-threatening or disabling bleeding*	2.4	7.5	(-7.5, -2.9)
Acute kidney injury, stage 2-3*	0.9	2.8	(-3.4, -0.5)
Major vascular complication	3.8	3.2	(-1.4, 2.5)
Atrial fibrillation*	7.7	35.4	(-31.8, -23.6)
Permanent pacemaker implant*	17.4	6.1	(8.0, 14.7)
All-cause mortality or disabling stroke*	0.8	2.6	(-3.2, -0.5)
All stroke	3.4	3.4	(-1.9, 1.9)
Aortic valve reintervention	0.4	0.4	(-0.8, 0.7)
* Significantly favors TAVR; * Significantly favors SAVR		BCI =	Bayesian credible interva

Valve Hemodynamics

Implanted population. Core lab assessments.

Conclusion

TAVR may be a preferred strategy to surgery in patients with severe aortic stenosis at low risk of surgical mortality.

Remaining questions

• 10 yr follow up for durability of valves

 Medtronic CoreValve vs. Sapien S3
CoreValve showed better hemodynamics but higher pacemaker rates – will these differences be significant?

NOTION 2 trial – Low risk pts <75 years of age

Choice of TAVR Versus Surgical AVR in the Patient With Severe Symptomatic AS (Modified)

Helping Cardiovascular Professionals Learn. Advance. Heal.

The Next Frontiers for TAVR

Asymptomatic patients – EARLY TAVR

Bicuspid Valve patients – Several registries

Pure Native Valve Aortic Regurgitation

 TAVR is beneficial in most patients at high, intermediate and low risk and has been aided by the evolution of TAVR technology

 More studies being performed on asymptomatic patients and bicuspid valve patients (need comparison with SAVR)