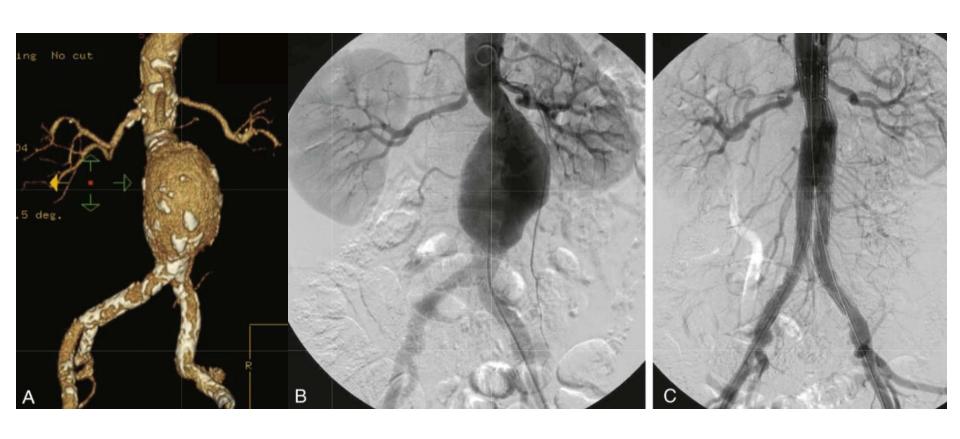


EVAR Technology Makes it the 1st Choice

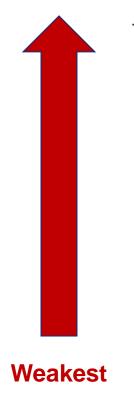
Dr. Dipankar Mukherjee, MD, FACS Chief of Vascular Surgery, Inova Fairfax Medical Campus

Inova Cardiovascular Symposium April 27th, 2019


Disclosures

- On the speaker's panel for
- Silk Road Medical
- Endologix

EVAR for 6cm AAA



Levels of Evidence

Strongest

Level of Evidence A	Data derived from multiple randomised clinical trials or meta-analyses.
Level of Evidence B	Data derived from a single randomized clinical trial or large non-randomized studies.
Level of Evidence C	Consensus of opinion of the experts and/or small studies, retrospective studies, registries.

Classes of Recommendations

Classes of Recommendations	Definition		
Class I	Evidence and/or general agreement that a given treatment or procedure is beneficial, useful, and effective.		
Class II	Conflicting evidence and/or a divergence of opinion about the usefulness/efficacy of the given treatment or procedure.		
Class IIa	Weight of evidence/opinions in favor of usefulness/efficacy.		
Class IIb	Usefulness/efficacy is less well-established by evidence/opinion.		
Class III	Evidence or general agreement that the given treatment or procedure is not useful/effective, and in some cases may be harmful.		

EVAR I Clinical Trial

- Location: United Kingdom (UK)
- Years: 1999 to 2003
- Sample Size: 1,082
- Outcomes:
 - Better perioperative survival after EVAR (1.7% vs 4.7%)
 - Early survival benefit lost after 2 years, with similar long-term survival
 - Higher aneurysm related mortality for EVAR after 8 years
 - Mainly attributable to secondary aneurysm sac rupture
 - Higher reintervention rate after EVAR

DREAM Clinical Trial

- Locations: Netherlands and Belgium
- Years: 2000 to 2003
- Sample Size: 351
- Outcomes:
 - Better perioperative survival after EVAR (1.2% vs 4.6%)
 - Early survival benefit was lost by the end of the 1st year
 - Similar long-term survival
 - Higher reintervention rate after EVAR

OVER Clinical Trial

Location: United States

Years: 2002 to 2008

Sample Size: 881

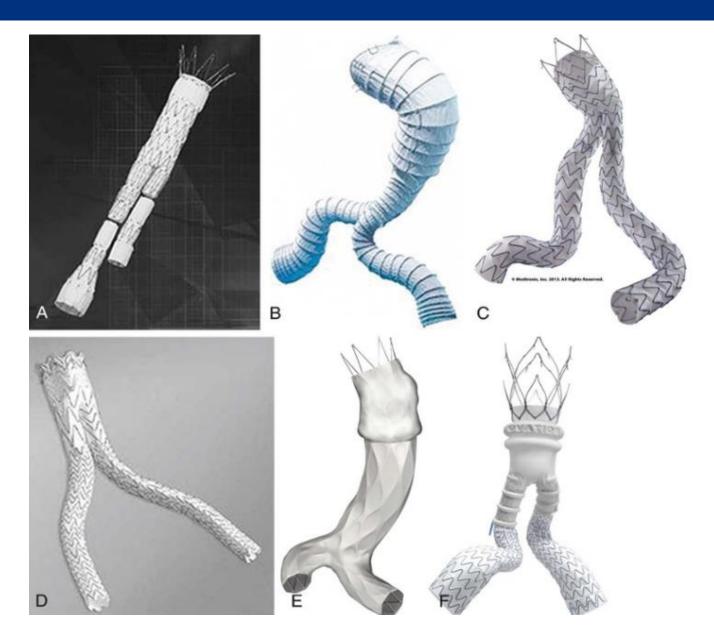
- Outcomes:
 - Better perioperative survival after EVAR (0.5% vs. 3.0%)
 - Early survival benefit sustained to 3 years but not thereafter
 - No difference in:
 - Reintervention rate
 - Quality of life
 - Cost and cost-effectiveness

ACE Clinical Trial

Location: France

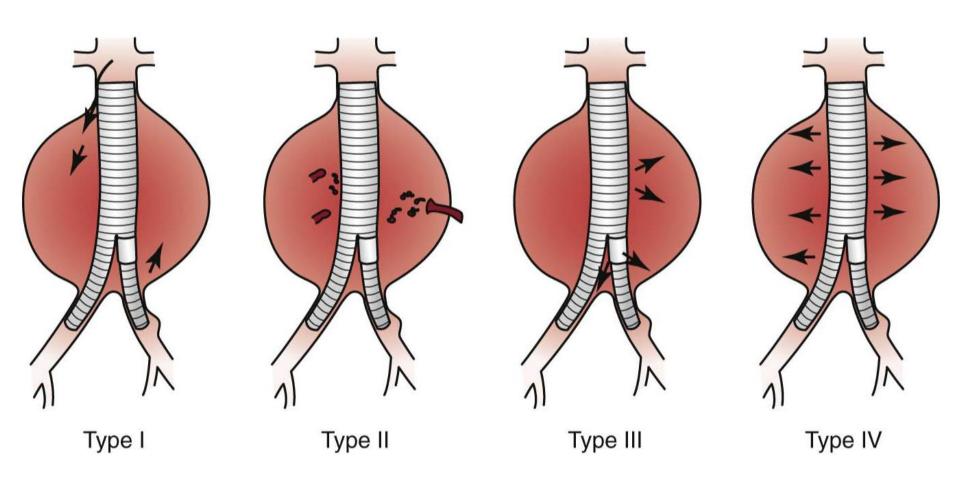
Years: 2003 to 2008

Sample Size: 316


Outcomes:

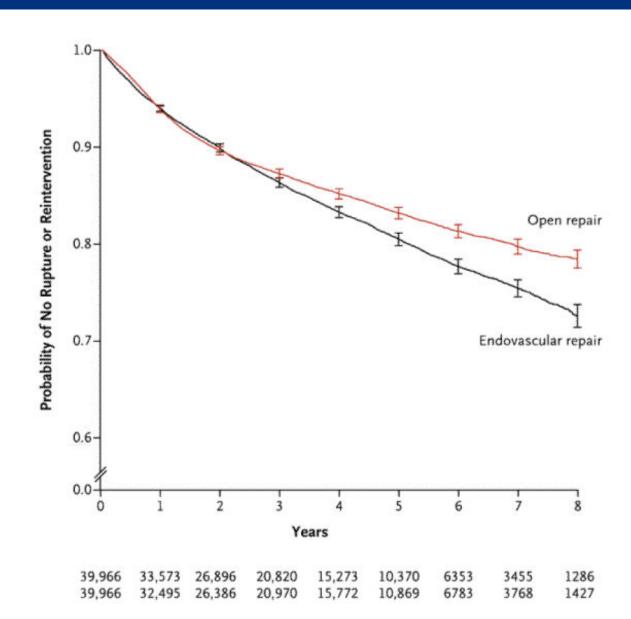
- No difference in perioperative survival (1.3% vs 0.6%)
- No difference in long-term survival up until 3 years
- Higher reintervention rate after EVAR

Evolution of Endograft Technology

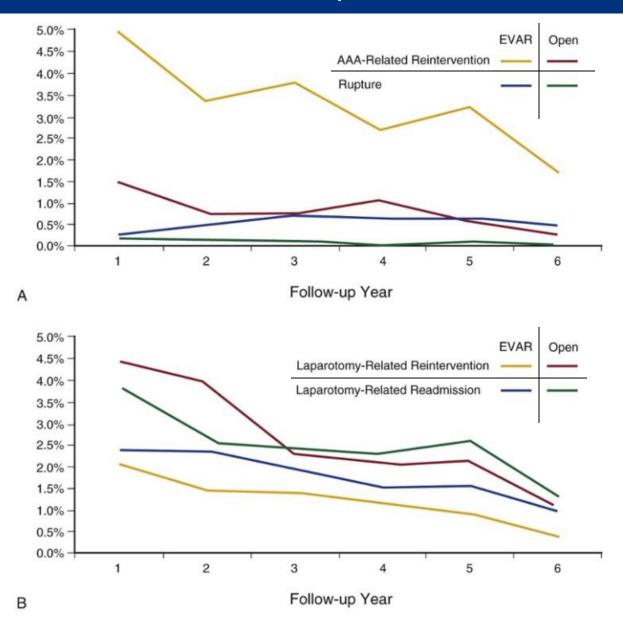

Device Characteristics of Current Stent Grafts

Device Name	Company	Configuration	Min-Max Device Diameter	Fabric; Metal	Active Fixation	Anatomic Fixation
Zenith	Cook	Trimodular	22-36	Woven polyester; Stainless steel	Suprarenal stent w/ barbs	
Aorfix	Lombard Medical	Bimodular	24-31	Woven polyester; Nitinol	Hooks	
Endurant	Medtronic	Bimodular	23-36	Woven polyester; Nitinol	Suprarenal stent w/ barbs	
Excluder	Gore	Bimodular	23-31	ePTFE; Nitinol	Infrarenal barbs	
AFX	Endologix	Unibody	22-34(cuff)	ePTFE; Cobalt chromium	Suprarenal deployment at Aortic bifurcation	Deployment at Aortic bifurcation
Ovation	Trivascular	Trimodular	20-24	ePTFE; Nitinol	Suprarenal stent w/ barbs and infrarenal sealing rings	

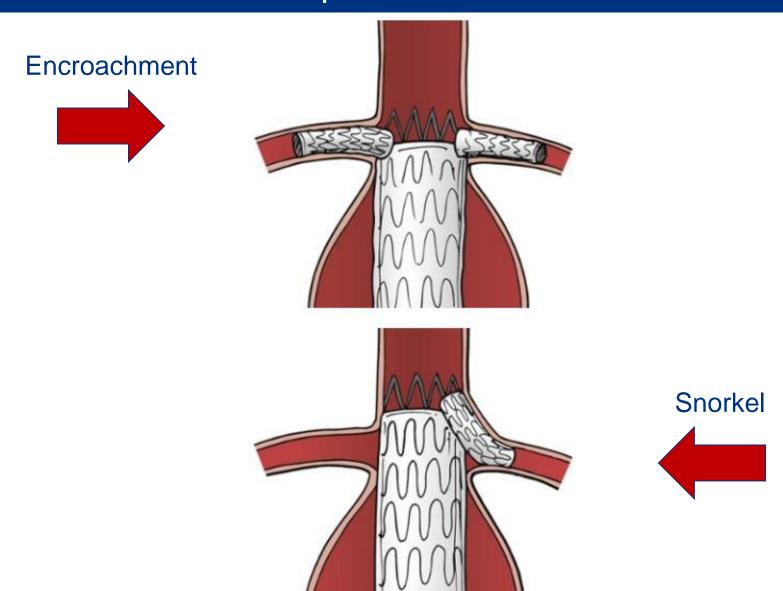
Complications of EVAR



Durability Issue of EVAR


Schermerhorn et al N Engl J Med. 2015 Jul 23;373(4):328-38.

No. at Risk Endovascular repair Open repair


Reinterventions for Medicare Beneficiaries – Long-Term Results: EVAR vs Open

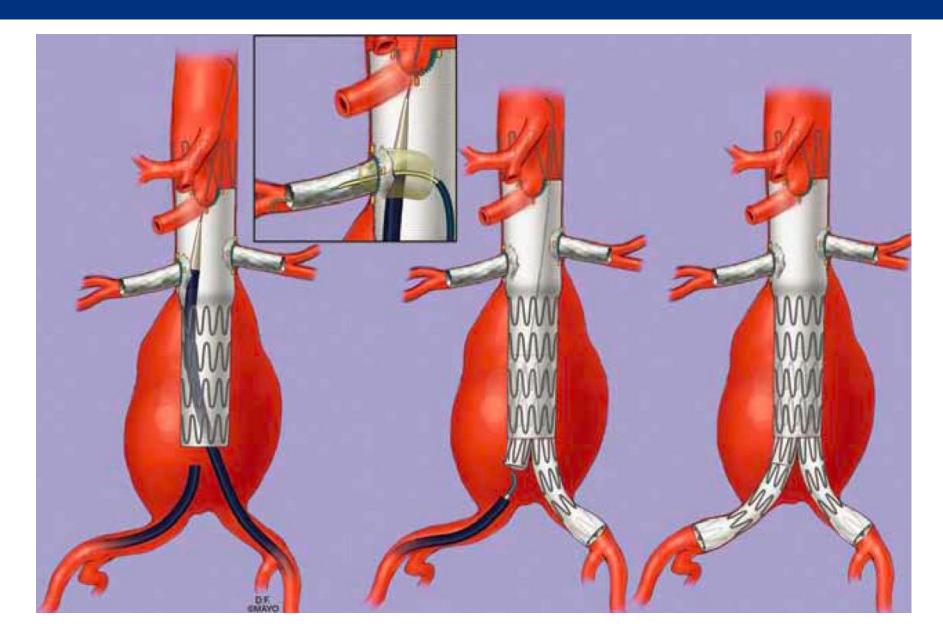
EVAR for Short Neck AAA - Encroachment and Snorkel Techniques

Durability Issue of EVAR

- Most common failure mode of EVAR is loss of proximal seal
 - Most often seen in 'wide neck' AAA
- Poor or no seal in aneurysmal necks
- Seen with all endografts with outward expansile force from self-expanding metal stents
 - Similar results seen in the GREAT Trial (Excluder), ENGAGE Registry (Endurant), and meta analysis of EVAR for 'wide neck' AAA
- Favorable results with OVATION 34mm device in the ENCORE study...

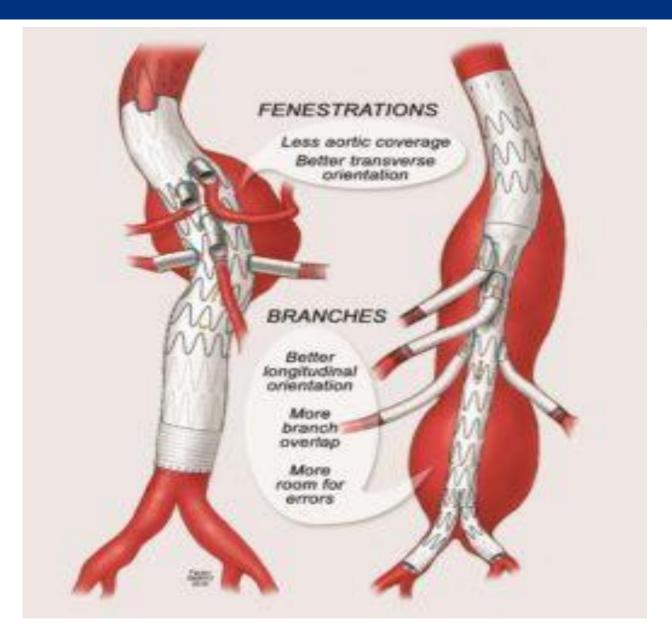
OVATION for Short Wide Neck AAA

ENCORE Study

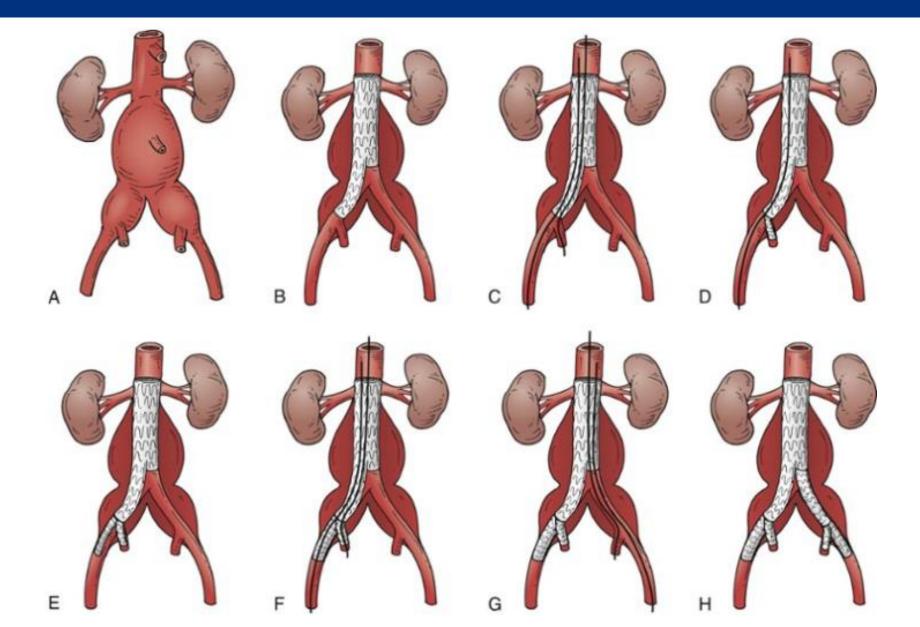

- ENCORE: Addressing the 'durability issue of EVAR'
 - Effective Ness of Custom seal with Ovation: Review of the Evidence
- OVATION device [34mm]; Largest current device
 - Objective: Determine impact of polymer sealing on neck-related adverse events looking at 5-year patient outcomes
- Retrospective analysis of 6 prospective studies
 - Sample Size: 1,296
 - 242 patients with OVATION device group
 - 1,054 patients = comparison group

- Results:
 - 5-year results suggest EVAR w/ proximal polymer sealing does not appear to induce neck dilation compared to other devices
 - Suggests the <u>OVATION device is durable</u> w/ wide neck anatomy
 - Patients w/ OVATION at largest size had a comparable number of complications of other devices

FEVAR – "Building Up"


5-Year Outcomes of Fenestrated EVAR (FEVAR) Grafts

FEVAR Graft Outcomes - Varlevisser et al., February 2019						
Outcomes	Effect Values	P-value				
Perioperative: ZFENs vs Open Complex AAA Repairs						
Mortality (%)	1.8% vs 8.8%	0.001				
*Mortality (OR)	4.9 [95% CI:1.4-18.0]	<0.05				
Blood Transfusions (%)	22% vs 73%	<0.001				
Length of Stay (median)	2 days vs 7 days	<0.001				
Postoperative: ZFENs vs Open Complex AAA Repairs						
Renal Dysfunction (%)	1.4% vs 7.7%	0.002				
*Renal Dysfunction (OR)	13.0 [95% CI:3.6-49.0]	<0.05				
Overall Complications (%)	11% vs 33%	<0.001				
*Overall Complications (OR)	4.2 [95% CI:4.2-7.5]	<0.05				
ZFENs vs EVAR (%)						
Perioperative Mortality	1.8% vs 0.8%	0.084				
Postoperative Renal Dysfunction	1.4% vs 0.7%	0.19				
Postoperative Any Complication	11% vs 7.7%	0.09				
Notes: for % values the % listed to the audience's left = ZFEN and right = Open Complex AAA Repair OR right = infrarenal EVAR. *= Adjusted multivariate logistic regression models (Odds Ratios). OR = Odds Ratios.						


FEVAR and BEVAR

Complex Repairs with IIA Preservation

Vascular Recommendations - AAA Repair in Medical Centers

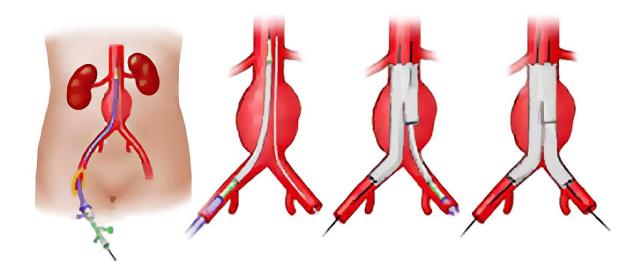
- AAA repair <u>is not recommended</u> in centers with a caseload of <30 repairs/year
 - Class IIa; Evidence Level C
- Centers, networks, and collaborators treating AAA
 patients are recommended to offer both endovascular
 and open aortic surgery at all times
 - Class I; Evidence Level B

Vascular Recommendations - Approach

- Rupture Treatment Endovascular AAA Repair:
 - In patients with known ruptured AAA and suitable anatomy EVAR is recommended as a 1st option
 - Class I; Evidence Level B
- Percutaneous Approach:

Ultrasound-guided percutaneous approach <u>is recommended</u> in

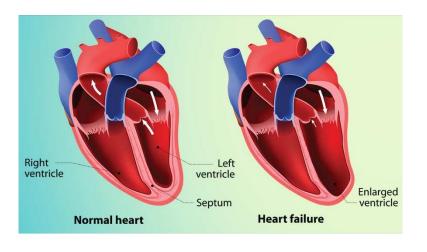
endovascular AAA repair


Class IIa; Evidence Level B

Percutaneous Access, Endovascular AAA Repair - Contraindications

Contraindications:

- Severely scarred groin
- High femoral bifurcation
- Need for frequent introducer sheath changes
- Significant proximal iliac occlusive disease
- Small iliofemoral arteries
- Anterior calcific femoral disease



Summary of Recommendations

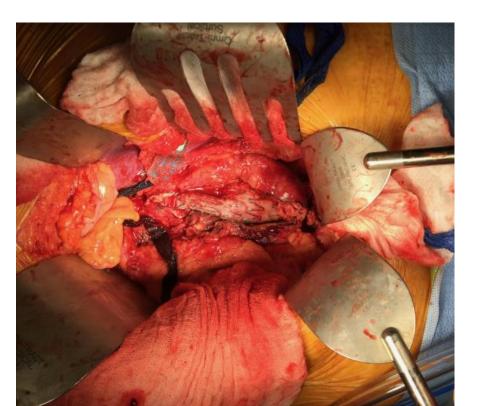
- Elective AAA Repair:
 - Normal survival is on average ~9 years
 - Not recommended in patients with limited life expectancy
 - Terminal cancer
 - Severe cardiac failure
 - A pragmatic definition of "limited life expectancy" is >2–3 years

Summary of Recommendations

- Evidence for EVAR vs Open in AAA Repairs:
 - Most in favor of EVAR:
 - Significant short-term survival benefit
 - Similar long-term outcomes up to 15 years
 - Possible negative EVAR outcomes:
 - Increased rate of complications may occur after ~8–10 years
 - Earlier generation EVAR devices
 - Uncertain durability of current devices
 - Particularly low-profile devices

Therefore: EVAR should be considered the preferred modality in most patients, but it's reasonable to suggest open first for younger, fit patients, with a life expectancy of at least >10–15 years

Declining Experience for Open AAA Repair


Dua et al. "Progressive shortfall in open aneurysm experience for vascular surgery trainees with the impact of fenestrated and branched endovascular technology". J Vasc Surg. 2017 Jan;65(1):257-261.

- Initial Prediction (2014):
 - Vascular trainees would complete ~5 open aortic repairs by 2020
- Updated Data:
 - BrEVAR and FEVAR:
 - Now appears vascular trainees will complete only 1 to 3 open aortic repairs during training
 - Therefore, ~1.2 open aortic repairs
 - Additionally, the accelerating pace of EVAR use from 2012-2014 contributes to this trend

Which would you rather have?

Open AAA Repair

EVAR AAA Repair

Thank You!

