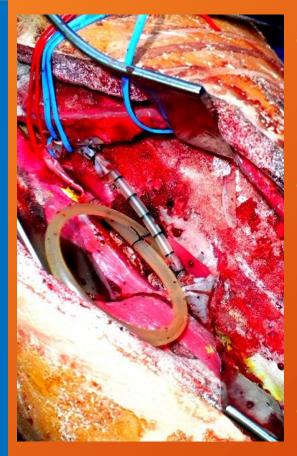
2019 IHVI Cardiovascular Symposium

Lower Extremity Revascularization

Endovascular Should Be First

Christopher J. White MD, MACC, MSCAI, FAHA, FACP, FESC Professor and Chairman of Medicine and Cardiology Ochsner Medical Center, New Orleans, LA

Conflicts of Interest



None to declare relevant to PAD.

Starting Point

- By advocating for "endo-first", I am <u>not</u> saying there is no role for open surgery in PAD.
- I am suggesting, that for the average patient, with the average clinical scenario, the least invasive, least morbid, safe and effective option should be chosen first.
- For the average PAD patient, that is endo-first.

Revascularization Conditions

- Chronic Limb Ischemia: Functional improvement.
 - Failed medical and exercise therapy.
 - Risk of limb loss very low.
 - Emphasis on long-term patency.
- Critical Limb Ishemia: Tissue loss, mortality high.
 - Urgent revascularization.
 - Establish straight-line flow to foot.
 - Institute optimal medical therapy.

Current State of the Art

- Femoral popliteal lesions: DCB > DES > BMS.
 - ▶ There are no comparative trials of Fem-Pop DCB vs DES.
 - DCB is preferred to leave no metal behind.
- Below-knee lesions: DES > BMS > PTA.
 - No role at this time for DCB.
 - DES (coronary) for ≤ 40 mm lesions.

Drug-Coated Devices and Mortality

NEWS - INTERVENTIONAL

Two Trials Halted in Wake of Study Linking Paclitaxel-Coated Devices to Deaths in PAD

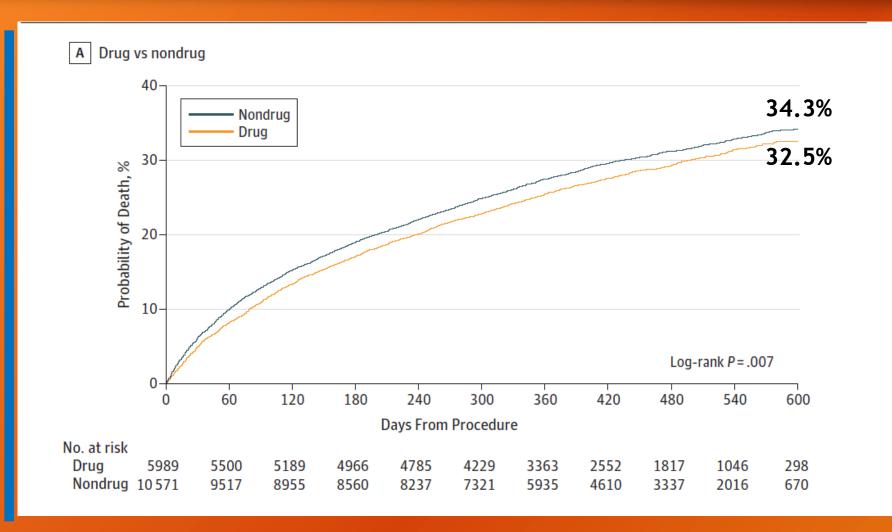
A special meeting will be held in the coming months to review the issue. The lead author says he's pleased endovascular specialists are taking it seriously.

By L.A. McKeown | December 17, 2018

Treatment of Peripheral Arterial Disease with Paclitaxel-Coated Balloons and Paclitaxel-Eluting Stents Potentially Associated with Increased Mortality - Letter to Health Care Providers

January 17, 2019

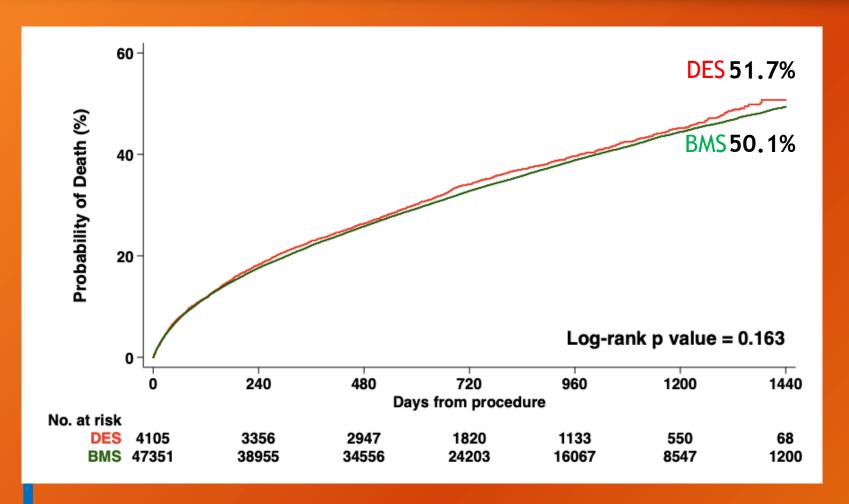
Dear Peripheral Interventionalists and Vascular Medicine Physicians:


We are writing to inform you that the FDA is evaluating recent information regarding the potential for increased long-term mortality after use of paclitaxel-coated balloons and paclitaxel-eluting stents to treat peripheral arterial disease (PAD) in the femoropopliteal artery.

A <u>recent meta-analysis</u> of randomized trials published in the Journal of the American Heart Association (JAHA) suggests a possible increased mortality rate after two years in PAD patients treated with paclitaxel-coated balloons and paclitaxel-eluting stents compared to patients treated with control devices (non-coated balloons or bare metal stents). The specific cause for this observation is yet to be determined.

All Patients, All Devices (DCB & DES)

No difference in survival in adjusted analysis

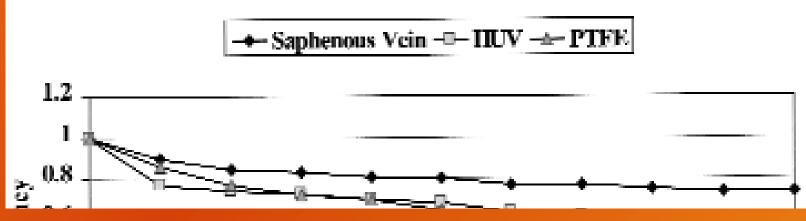

Adjusted HR 0.97; 95% CI, 0.91-1.04; P = .43

Long-Term Survival after Peripheral DES

No difference in survival in adjusted analysis

Adjusted HR 0.98; 95%CI, 0.93-1.03; P = .53

Evidence: Fem-Pop Revascularization



Gold standard: Autogenous vein graft.

768 patients, VA hospitals, 3 armed prospective trial

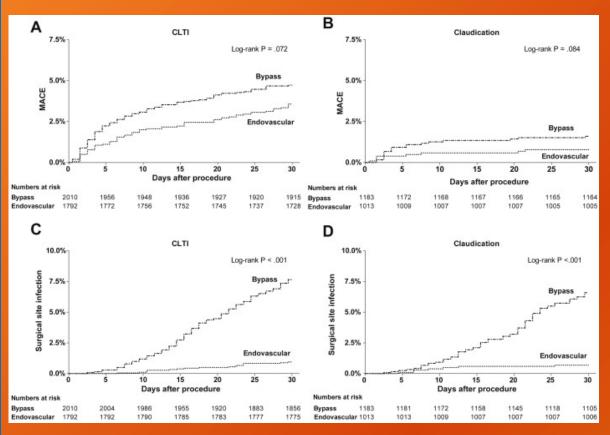
FEMORAL-POPLITEAL ABOVE KNEE BYPASSES 73%

Saphenous vein Umbilical vein PTFE

Endo vs Bypass: Primary Patency 4 yrs

- Randomised controlled trials of bypass surgery versus PTA.
- NO DCB/DES trials.

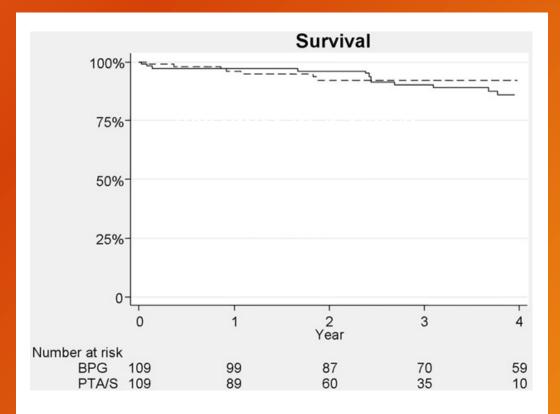
	Surge	ry	Angiopla	asty		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	Year	M-H, Fixed, 95% CI
1.7.1 Intermittent cla	udication							
Veterans Study	70	94	65	97	43.1%		1993	+
Subtotal (95% CI)		94		97	43.1%	1.44 [0.77, 2.69]		•
Total events	70		65					
Heterogeneity: Not ap								
Test for overall effect:	Z = 1.13 ((P = 0.2)	26)					
1.7.2 Critical limb isc	haemia							
Veterans Study	22	39	19	33	23.7%	0.95 [0.37, 2.43]	1000	
Subtotal (95% CI)	22	39	19	33	23.7%	0.95 [0.37, 2.43]	1993	
Total events	22		19			,,		\top
Heterogeneity: Not ap								
Test for overall effect:		P = 0.9	32)					
		•	•					
1.7.3 Combined inter	mittent cl	laudica	ition and (critical	limb isch	naemia		
McQuade 2010	29	50	30	50	33.2%	0.92 [0.41, 2.04]	2009	 _
Subtotal (95% CI)		50		50	33.2%	0.92 [0.41, 2.04]		•
Total events	29		30					
Heterogeneity: Not ap	plicable							
Test for overall effect:	Z = 0.20 ((P = 0.8)	34)					
T-4-1 (DEN/ CI)		402		400	400.0%	4 45 (0 74 4 70)		
Total (95% CI)		183		180	100.0%	1.15 [0.74, 1.78]		—
Total events	121	2 (D	114	000				
Heterogeneity: Chi²=				0%				0.01 0.1 1 10 100
Test for overall effect:		-	•	2 (D = 2	0.000 12	000		Favours angioplasty Favours surgery
Test for subgroup diff	erences:	∪ni * = I	บ.ช3, at =	2 (P = L	i.b3), l*=	U%		



Endo vs Surgery: 30 Day Complications

NSQIP Data Set 2011 - 2014

- A total of 5998 patients underwent firsttime infrainguinal revascularization and were included in this study.
- In the CLTI cohort of 3802 patients, 2010 (53%) were treated with a bypass-first approach (19% of these were tibial procedures) and 1792 (47%) with an endovascular-first approach (31% were tibial procedures).
- Among 2196 patients with claudication, 1183 (54%) underwent first-time bypass (5% were tibial procedures) and 1013 (46%) first-time endovascular intervention (9% were tibial procedures).



Femoral-Popliteal Revascularization

Table IV. (Outcomes/	compl	lications
-------------	-----------	-------	-----------

	Bypass	Primary angioplasty/ stent	P value
Length of stay (mean days)	3.9 (2-11)	1.2 (1-3)	<.01
Acute myocardial infarction	1%	0	NS
Pseudoaneurysm	0	4%	NS
Wound infection	16%	0%	<.01
Renal failure >20% increase in creatinine	3%	3%	NS
Return to operating room	3%	0	NS
Bleeding complication	2%	1%	NS
Hematoma	0	2%	NS
Postoperative occlusion	2%	0	NS

Fig 6. There is no difference in mortality between bypass (BPG) and percutaneous transluminal angioplasty \pm stent (PTA/S) at 3 years.

Bypass: Surgical Site Infections

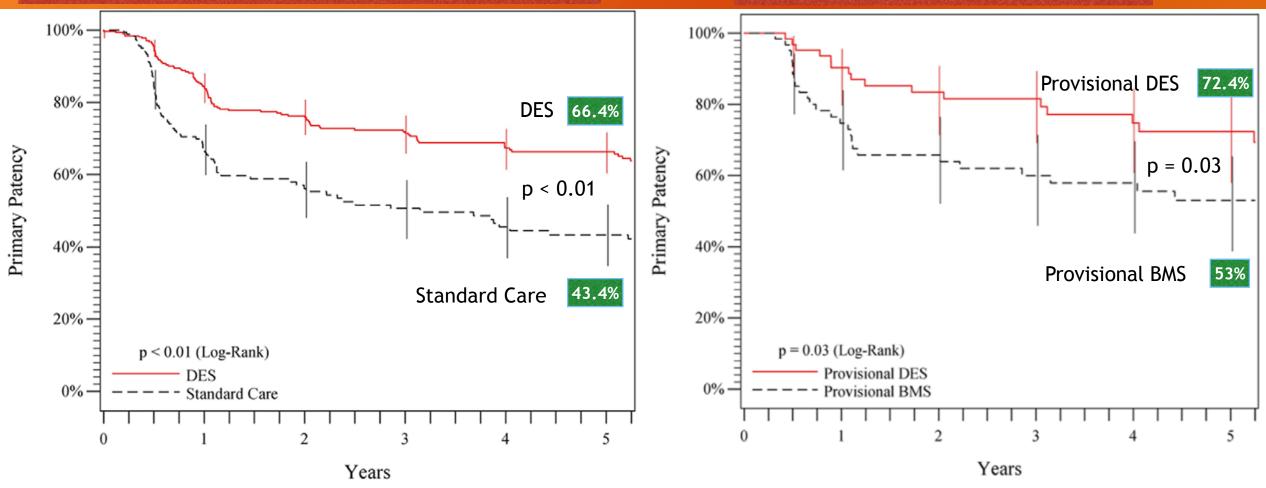
Table V. Comparison of 30-day morbidity and mortality for patients with and without surgical site infection (*SSI*)

	No SSI (n = 2713),	SSI (n = 320),	
Variable	No. (%)	No. (%)	P value
Transfusion	768 (28.4)	151 (47.3)	<.01
Amputation	222 (8.2)	51 (16.3)	.02
Major amputation	62 (2.3)	28 (9.0)	<.01
Readmission			
Lymph leak	26 (1.0)	15 (4.8)	<.01
Thrombectomy/lysis	37 (1.4)	4 (1.3)	1.00
Open bypass revision			
Surgical	19 (0.7)	11 (3.9)	<.01
Percutaneous	8 (0.3)	2 (0.7)	.98
Myocardial infarction	59 (2.2)	8 (2.6)	1.00
TIA/stroke	15 (0.6)	10 (3.2)	0.19
Dialysis	3 (O.1)	4 (1.3)	0.30
Death	26 (1.0)	11 (3.5)	1.00

- Michigan statewide database
- 3,033 bypasses
- Surgical site infection: 10.6%

DCB >> PTA: Meta-Analysis Fem-Pop

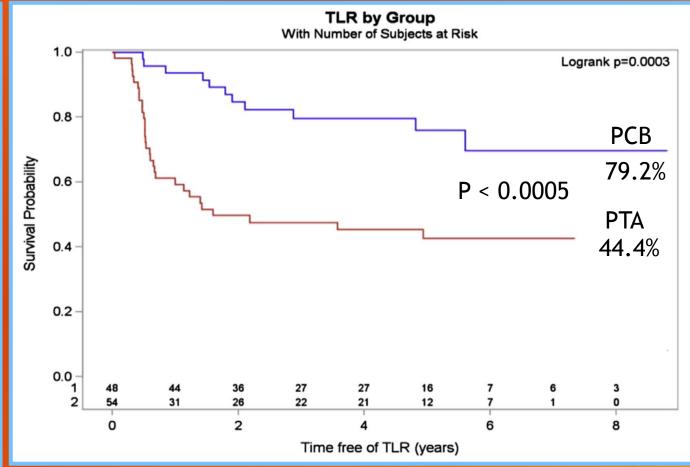
	DC	В	PE	3							
	Events	Total	Events	Total		F	R	[95% CI]	Weight	Z Value	p Value
Biolux P-I	4	25	10	24	- 10	0.3	8	[0.14, 1.06]	11.6%	-1.848	0.065
FAIR	3	47	16	44	- B	0.1	8	[0.06, 0.59]	10.3%	-2.864	0.004
FemPac	3	45	14	42	- B:-	0.2	0	[0.06, 0.65]	10.2%	-2.687	0.007
IN.PACT SFA	6	207	22	107	- 1	0.1	4	[0.06, 0.34]	12.9%	-4.404	<0.001
LEVANT I	13	45	14	42	-	0.8	7	[0.46, 1.62]	15.3%	-0.447	0.655
LEVANT 2	35	285	24	143	-	0.7	3	[0.45, 1.18]	16.8%	-1.278	0.201
PACIFIER	3	42	12	43	-	0.2	6	[0.08, 0.84]	10.1%	-2.242	0.025
THUNDER	5	48	26	54		0.2	2	[0.09, 0.52]	12.9%	-3.341	0.001
Frequentist	72	744	138	499	-	0.3	3	[0.19, 0.57]	100%	-3.997	<0.001
Bayesian						0.3	0	[0.14, 0.58]*			
Q=22.85, p=0.00	2, r³=0.40	5, 19=69.4	%								
					0.1 0.5 1 2	10					



FEMORAL: DES vs. PTA at 5 Years

DES = 1° DES + Provisional DES Standard Care = Optimal PTA + Provisional BMS

PTA + Provisional DES PTA + Provisional BMS

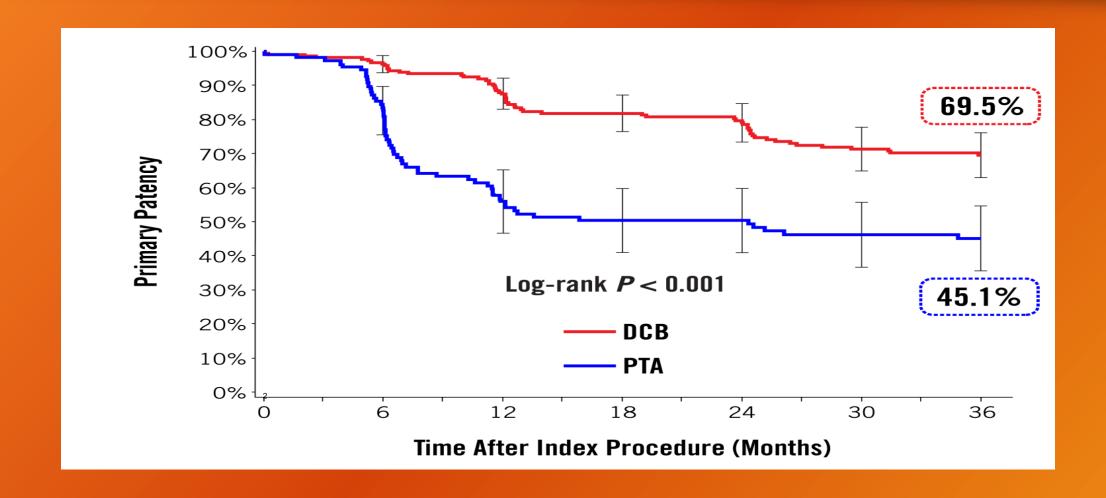

Angioplasty of Femoral-Popliteal Arteries With Drug-Coated Balloons

V

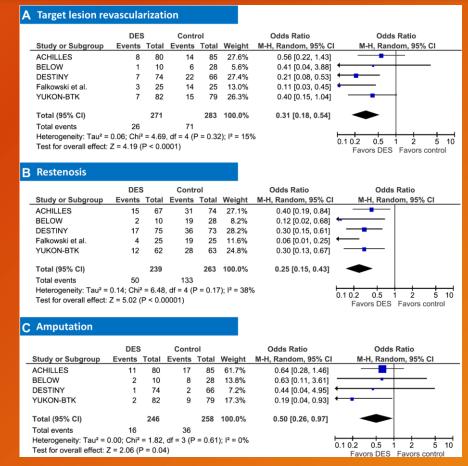
5-Year Follow-Up of the THUNDER Trial

Gunnar Tepe, MD,* Beatrix Schnorr, DVM,† Thomas Albrecht, MD,‡ Klaus Brechtel, MD,§ Claus D. Claussen, MD,§ Bruno Scheller, MD,|| Ulrich Speck, PhD,† Thomas Zeller, MD¶

TABLE 2 LLL, Binary Restenosis, and Cumulative TLR Over the Study Period									
	C	ontrol Group (n = 54)		PCB Group (n = 48)					
LLL (mm)	Mean ± SD	Patients With Data, n	Mean ± SD	Patients With Data, n	p Value				
6-month FU	1.7 ± 1.8	48	0.4 ± 1.2	41	0.0007				
12-month FU	1.9 ± 1.9	36 14 with previous TLR	0.7 ± 1.5	33 2 with previous TLR	0.01				
5-year FU	1.5 ± 1.3	11 4 with previous TLR	0.7 ± 1.9	13 1 with previous TLR	0.54				
	% Related to Patients % Related to Patients								
Binary Restenc	osis (%) r	With Data	n	With Data	p Value				
6-month FU	2	1 43.8	7	17.1	0.01				
12-month FU	1	7 50.0	8	24.2	< 0.05				
5-year FU	7	54	3	17	0.04				
		Treated Patient	s,	Treated Patients,					
First TLR (cum	ulative)	n % (n = 54)	n	% (n = 48)	p-value				
6-month FU		20 37.0	2	4.2	<0.0001				
12-month FU		26 48.1	5	10.4	<0.0001				
24-month FU		28 51.9	8	16.7	0.0003				
5-year FU		30 55.6	10	20.8	0.0005				



DCB Primary Patency at 3 Years


Below-Knee: Drug Eluting Stents

Drug-Eluting Stents for Revascularization of Infrapopliteal Arteries: Updated Meta-Analysis of Randomized Trials

Feiring, AJ, Wesolowski, AA. CCI 2007,69:665-670

PAD APPROPRIATE USE CRITERIA

WILEY

PERIPHERAL VASCULAR DISEASE

Core Curriculum

SCAI appropriate use criteria for peripheral arterial interventions: An update

Andrew J. Klein, MD, FSCAl¹ | Michael R. Jaff, DO, FSCAl² | Bruce H. Gray, DO, FSCAI³ | Herbert D. Aronow, MD, MPH, FSCAI⁴ Robert M. Bersin, MD, MPH, FSCAI⁵ | Larry J. Diaz-Sandoval, MD, FSCAI⁶ Robert S. Dieter, MD, RVT, FSCAl⁷ | Douglas E. Drachman, MD, FSCAl⁸ Dmitriy N. Feldman, MD. FSCAI⁹ | Osvaldo S. Gigliotti, MD, FSCAI¹⁰ Kamal Gupta, MD, FSCAI¹¹ | Sahil A, Parikh, MD, FSCAI¹²

Duane S. Pinto, MD, MPH, FSCAl¹³ | Mehdi H. Shishehbor, DO, MPH, PhD, FSCAl¹⁴

Christopher J. White, MD, MSCAl15

Piedmont Heart Institute Atlanta GA

³Newton-Wellesley Hospital, Newton, MA ³Greenville Health System, Greenville, SC

⁵University of Kansas Medical Center, Kansas City, KS

¹³Columbia University Medical Center/NY Presbyterian Hospital, New York, NY ¹³Beth Israel Deponness Medical Center, Boston, MA

Cleveland Clinic, Cleveland, OH

¹⁵Ochsner Medical Center, New Orleans, LA

Correspondence

Christopher J. White, MD. MSCAI, 1514 Jefferson Highway, New Orleans, LA 70121

Email: cwhite@ochsner.ora

1 | INTRODUCTION

Abbreviations: BE, balloon expandable: BMS, bare metal stent: BP, blood pressure; CIA, common lilac artery; CKD, chronic kidney disease; CTO, chronic total occlusion: DCB, drug coated balloon: DES, drug eluting stent: EIA, external iliac artery; EVT, endovascular therapy; FP, femoral-popliteal; GDMT, guideline directed medical therapy: HTN, hypertension: IP, infrapopliteal: LASER, light amplification by stimulated emission of radiation: PEA. profunda femoris artery: PVAD, percutaneous ventricular assist device: PTA. percutaneous transluminal angioplasty; RAS, renal artery stenosis; RC, research. Clinical scenarios were described in which catheter-based Rutherford classification: SE, self-expanding: TAVR, transcatheter agric valve replacement: TLR, target lesion revascularization intervention was classified as "appropriate," "may be appropriate," or

In 2014, the Society for Cardiovascular Angiography and Interventions (SCAI) published the first Appropriate Use Criteria (AUC) for endovasclinicians' decision-making, to improve patients' understanding regarding relative risks and benefits of a procedure, and to guide future

- The AUC for PAD have the potential to impact physician decision making, healthcare delivery, and reimbursement policy.
- Recognition of 'uncertain' clinical scenarios facilitates identification of areas that would benefit from future research.
- The objective of AUC is to improve health outcomes in a cost-effective manner, but are not intended to ignore ambiguity and nuance intrinsic to patient-centered clinical decision making.
 - AUC should not be considered a substitute for sound clinical judgment based on experience.

Intermittent Claudication; No Prior Guideline-Directed Medical Therapy

	AUC Score			
Indications	Initiate Medical Therapy	Endovascular Treatment	Surgical Treatment	
14. Any lower extremity disease	A (9)	R (2)	R (1)	

A = Appropriate; AUC = Appropriate Use Criteria; R = Rarely Appropriate.

TABLE 2.2

Intermittent Claudication Despite Guideline-Directed Medical Therapy—Stenotic Lesions

	AUC Score					
Indications	Continue or Intensify Medical Therapy	Endovascular Treatment	Surgical Treatment			
15. ■ Aortoiliac	A (9)	A (8)	M (4)			
16. ■ SFA and popliteal artery	A (9)	A (7)	M (6)			
17. ■ Below the knee	A (9)	M (5)	R (3)			

A = Appropriate; AUC = Appropriate Use Criteria; M = May Be Appropriate; R = Rarely Appropriate; SFA = Superficial femoral artery.

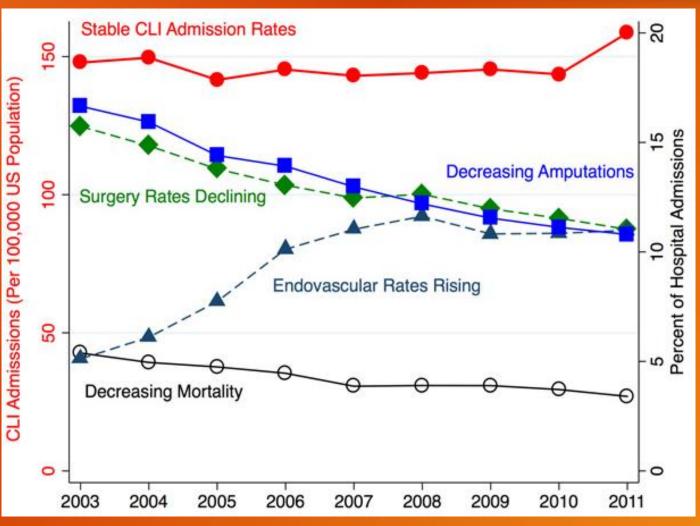
TABLE 2.3

Intermittent Claudication Despite
Guideline-Directed Medical Therapy—
Chronic Total Occlusion

	AUC Score						
Indi	cations	Continue or Intensify Medical Therapy	Endovascular Treatment	Surgical Treatment			
18.	■ Aortoiliac	A (9)	A (7)	M (6)			
19.	SFA and popliteal artery	A (9)	M (6)	M (6)			
20.	■ Below the knee	A (9)	M (4)	R (3)			

A = Appropriate; AUC = Appropriate Use Criteria; M = May Be Appropriate; R = Rarely Appropriate; SFA = Superficial femoral artery.

Appropriate Use Criteria


- Intermittent Claudication
 - Ao-Iliac
 - Fem-Pop Stenosis
 - Fem-Pop Occlusion
- Favor Endo-first over Surgery

CLI: US Trends

• In 2019, an Endo-First strategy for PAD revascularization is safe and effective when compared to Open Surgery.

Thank You

