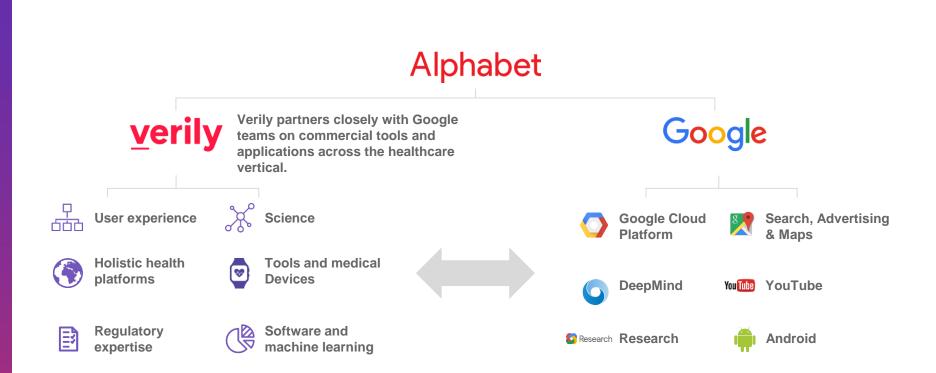
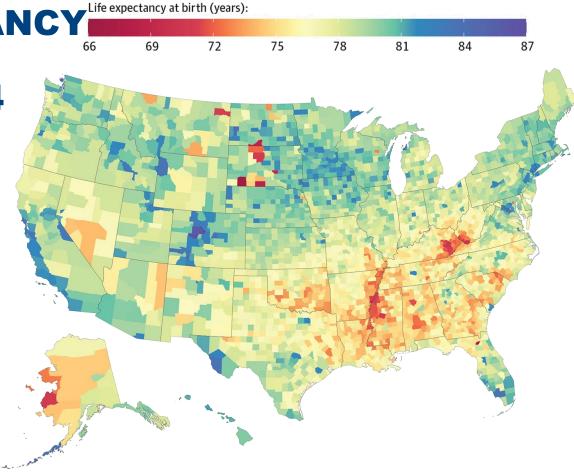


BIG DATA AND THE FUTURE OF CV MEDICINE


Robert M Califf MD Vice Chancellor for Health Data Science Duke University Advisor, Verily Life Sciences Inova April 27th, 2019

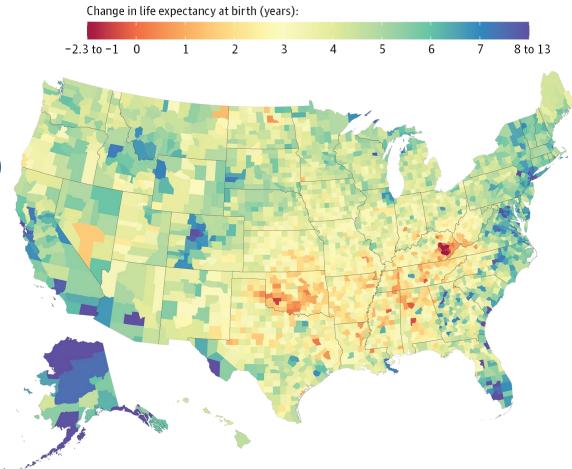
CONFLICTS OF INTEREST

- Employment
 - Duke University
 - Verily Life Sciences
- Corporate Board
 - Cytokinetics
- Consulting
 - Merck
 - Boeringer Ingelhheim
 - Amgen
 - Biogen
 - Genentech



LIFE EXPECTANCY AT BIRTH BY COUNTY, 2014

 Counties in South Dakota and North Dakota had the lowest life expectancy, and counties along the lower half of the Mississippi, in eastern Kentucky, and southwestern West Virginia also had very low life expectancy compared with the rest of the country. Counties in central Colorado had the highest life expectancies.


Dwyer-Lindgren L, et al. Inequalities in life expectancy among US counties, 1980 to 2014 - temporal trends and key drivers. JAMA Intern Med. 2017;177:1003-11. doi:10.1001/jamainternmed.2017.0918

CHANGE IN LIFE EXPECTANCY AT BIRTH BY COUNTY, 1980 TO 2014 - Compared with the national

average, counties in central Colorado, Alaska, and along both coasts experienced larger increases in life expectancy between 1980 and 2014, while some southern counties in states stretching from Oklahoma to West Virginia saw little, if any, improvement over this same period.

Dwyer-Lindgren L, et al. Inequalities in life expectancy among US counties, 1980 to 2014 - temporal trends and key drivers. JAMA Intern Med. 2017;177:1003-11. doi:10.1001/jamainternmed.2017.0918

From: Inequalities in Life Expectancy Among US Counties, 1980 to 2014Temporal Trends and Key Drivers

JAMA Intern Med. Published online May 08, 2017. doi:10.1001/jamainternmed.2017.0918

	Summary Statistics,	Bivariate Regression Results			
Variable	Mean (SD) [Range]	Coefficient (SE)	R ²		
Socioeconomic and race/Ethnicity factors					
Population below the poverty line, %	16.3 (6.4) [3.1-62.0]	-0.24 (0.005)	0.47		
Median household income, log \$	10.6 (0.2) [9.8-11.6]	6.06 (0.130)	0.41		
Graduates, age ≥25 y, %					
High school	83.7 (7.2) [46.3-98.6]	0.20 (0.004)	0.42		
College	19.2 (8.6) [4.2-72.0]	0.15 (0.004)	0.34		
Unemployment rate, age ≥16 y, %	9.1 (3.2) [2.1-27.4]	-0.29 (0.011)	0.18		
Black population, %	9.4 (14.7) [0-85.8]	-0.07 (0.002)	0.24		
American Indian, Native Alaskan, and Native Hawaiian population, %	2.3 (7.9) [0-97.2]	-0.06 (0.005)	0.04		
Hispanic population, %	8.1 (13.1) [0-95.9]	0.02 (0.003)	0.01		
Behavioral and metabolic risk factors, %					
Obesity prevalence, age ≥20 y	37.0 (4.3) [18.0-52.0]	-0.39 (0.006)	0.54		
No leisure-time physical activity prevalence, age ≥20 y	27.0 (5.2) [11.7-47.2]	-0.34 (0.005)	0.62		
Cigarette smoking prevalence, age ≥18 y	24.7 (4.1) [7.7-42.1]	-0.40 (0.007)	0.54		
Hypertension prevalence, age ≥30 y	39.5 (3.6) [27.9-56.4]	-0.49 (0.007)	0.62		
Diabetes prevalence, age ≥20 y	14.0 (2.4) [8.1-25.5]	-0.72 (0.011)	0.59		
lealth care factors					
Insured population, age <65 y, %	81.7 (5.7) [57.3-96.7]	0.15 (0.007)	0.14		
Quality index	70.1 (11.5) [0-100]	0.10 (0.003)	0.28		
Physicians per 1000 population, No.	1.1 (1.0) [0-4.4]	0.53 (0.039)	0.06		

Abbreviation: SE, standard error.

Table Title:

Variables Included in the Regression Analysis With Summary Statistics and Bivariate Regression Results

From: Trends and Patterns of Geographic Variation in Cardiovascular Mortality Among US Counties, 1980-2014

JAMA. 2017;317(19):1976-1992. doi:10.1001/jama.2017.4150

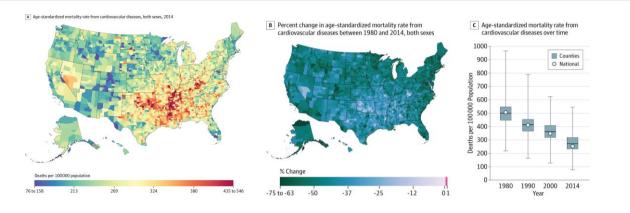
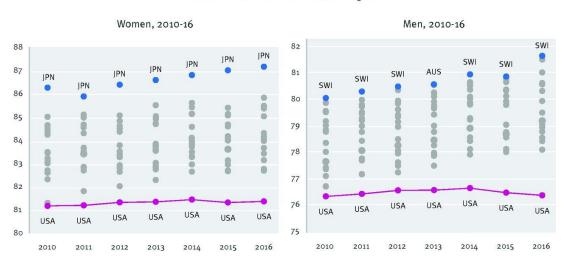


Figure Legend:

US County-Level Mortality From Cardiovascular DiseasesA, Age-standardized mortality rate for both sexes combined in 2014. B, Percent change in the age-standardized mortality rate for both sexes combined between 1980 and 2014. In panel A, the color scale is truncated at approximately the 1st and 99th percentiles as indicated by the range given on the scale. In panel B, the color scale is similarly truncated at the 1st percentile but not at the 99th percentile to avoid combining counties with decreases in the mortality rate and counties with increases in the mortality rate into a single group. C, Age-standardized mortality rate in 1980, 1990, 2000, and 2014. The bottom border, middle line, and top border of the boxes indicate the 25th, 50th, and 75th percentiles, respectively, across all counties; whiskers, the full range across counties; and circles, the national-level rate.

Date of download: 5/17/2017

Copyright 2017 American Medical Association. All Rights Reserved.


Top 25 Causes of Disability-Adjusted Life-Years (DALYs) and % Change in Number of DALYs, All-Age DALYs, and Age-Standardized DALYs, 1990-2016

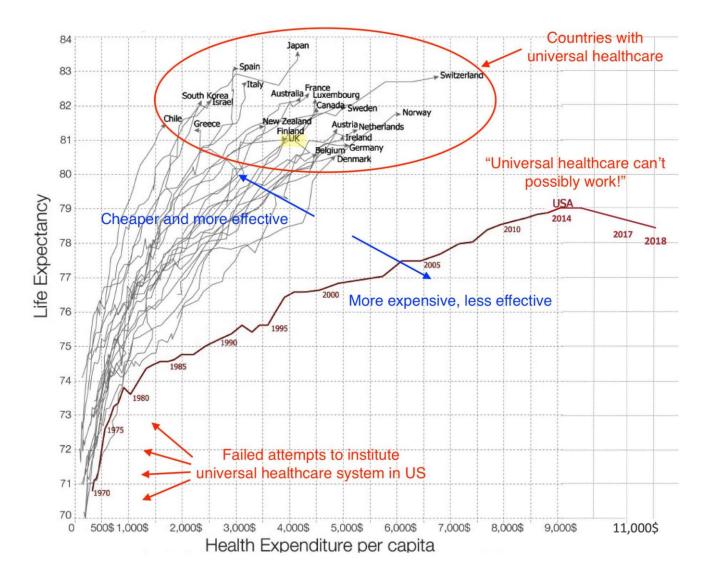
Dotted lines: leading cause decreased in rank between 1990-2016; solid lines: cause maintained/ascended to higher ranking.

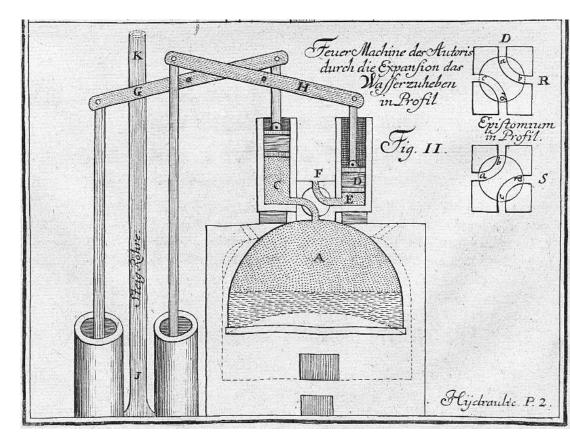
Leading causes of DALYs, 1990		Leading causes of DALYs, 2016	No. of DALYs	All-Age DALY Rate	Age-Standardized DALY Rate	
1 Ischemic heart disease		1 Ischemic heart disease	-18.3 (-20.5 to -16.1)	-36.7 (-38.4 to -35.0)	-49.7 (-51.1 to -48.3)	
2 Lung cancer ^a		2 Lung cancer ^a	14.1 (10.7 to 17.7)	-11.6 (-14.2 to -8.8)	-32.5 (-34.5 to -30.4)	
3 Low back pain		3 COPD	71.7 (66.2 to 78.7)	33.1 (28.8 to 38.5)	5.5 (2.2 to 9.7)	
4 COPD		4 Diabetes	75.6 (67.1 to 83.9)	36.1 (29.5 to 42.5)	11.0 (5.7 to 16.2)	
5 Motor vehicle road injury		5 Low back pain	25.1 (10.9 to 39.6)	-3.1 (-14.1 to 8.2)	-12.1 (-22.3 to -1.9)	
6 Diabetes	H I	6 Alzheimer disease	75.7 (63.4 to 88.2)	36.1 (26.6 to 45.8)	4.0 (-2.5 to 10.8)	
7 Major depression		7 Opioid use disorders	74.5 (42.8 to 93.8)	35.2 (10.6 to 50.1)	47.9 (21.8 to 64.1)	
8 Other musculoskeletal		8 Other musculoskeletal	32.2 (23.2 to 41.5)	2.4 (-4.6 to 9.6)	-2.6 (-9.0 to 3.6)	
9 Migraine		9 Major depression	27.1 (21.6 to 32.7)	-1.5 (-5.8 to 2.8)	0.1 (-4.1 to 3.7)	
10 lschemic stroke		10 Migraine	27.2 (25.3 to 29.1)	-1.4 (-3.0 to 0.0)	-1.4 (-2.8 to -0.1)	
11 Opioid use disorders		11 Neck pain	55.3 (39.2 to 73.3)	20.3 (7.8 to 34.2)	3.3 (-7.5 to 15.0)	
12 Alzheimer disease	Y V	12 Ischemic stroke	26.3 (21.3 to 31.1)	-2.2 (-6.0 to 1.6)	-22.4 (-25.5 to -19.4)	
13 HIV/AIDS other ^b		13 Falls	87.5 (68.4 to 97.5)	45.3 (30.5 to 53.0)	19.0 (8.5 to 24.5)	
14 Anxiety disorders		14 Anxiety disorders	30.8 (25.7 to 36.0)	1.4 (-2.6 to 5.4)	0.6 (-3.2 to 4.5)	
15 Neonatal preterm birth		15 Motor vehicle road injury	-16.5 (-20.3 to -12.2)	-35.3 (-38.3 to -31.9)	-35.0 (-37.7 to -31.8)	
16 Colorectal cancer		16 Age-related hearing loss	72.5 (67.3 to 78.3)	33.6 (29.6 to 38.1)	9.8 (6.6 to 13.4)	
17 Neck pain	1. 7	17 Colorectal cancer	16.6 (12.4 to 20.9)	-9.7 (-12.9 to -6.3)	-27.4 (-29.9 to -24.7)	
18 Breast cancer		18 Lower respiratory infection	27.7 (21.8 to 33.7)	-1.0 (-5.6 to 3.5)	-18.8 (-22.3 to -15.2)	
19 Lower respiratory infection	12	19 Intracerebral hemorrhage	31.6 (26.1 to 36.4)	2.0 (-2.3 to 5.6)	-17.0 (-20.4 to -14.1)	
20 Intracerebral hemorrhage	17	20 Breast cancer	6.1 (1.3 to 11.4)	-17.8 (-21.5 to -13.7)	-34.3 (-37.3 to -31.1)	
21 Falls		21 Diabetes CKD ^c	127.6 (118.7 to 136.8)	76.3 (69.5 to 83.5)	44.3 (39.5 to 49.5)	
22 Age-related hearing loss	Y \\ /	22 Self-harm by other means	49.2 (23.3 to 58.9)	15.6 (-4.5 to 23.1)	20.3 (-0.5 to 28.0)	
23 Acne vulgaris		23 Alcohol use disorders	30.8 (22.3 to 39.5)	1.3 (-5.2 to 8.1)	-0.2 (-5.8 to 5.7)	
24 Self-harm by firearm		24 Osteoarthritis	75.3 (68.5 to 82.6)	35.8 (30.5 to 41.5)	8.0 (3.7 to 12.5)	
25 Violence by firearm	XX	25 Acne vulgaris	16.0 (14.3 to 17.8)	-10.1 (-11.4 to -8.7)	-1.5 (-3.0 to 0.2)	
26 Alcohol use disorders	112-12	26 Neonatal preterm birth		Communicable, maternal, neona	atal and nutritional dispasos	
28 Self-harm by other means		28 Self-harm by firearm		loncommunicable diseases	atat, and nutritional diseases	
31 Osteoarthritis	1	37 Violence by firearm				
38 Diabetes CKD ^c	Y	51 HIV/AIDS other ^b		njuries		

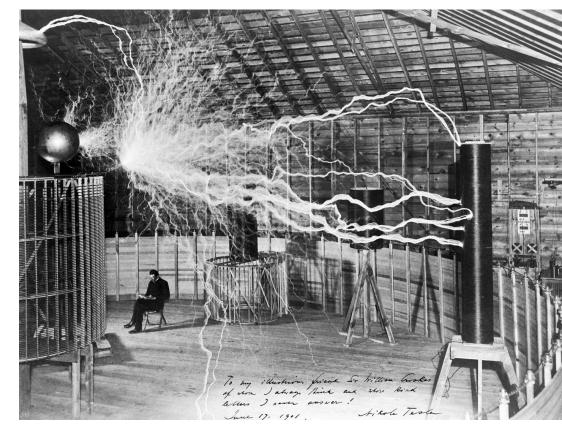
Mean % Change (95% Uncertainty Interval), 1990-2016

Life expectancy at birth (years) in 18 high income countries for women and men during 2010-16 and 1990-2015.

USA • World leader • Remaining countries

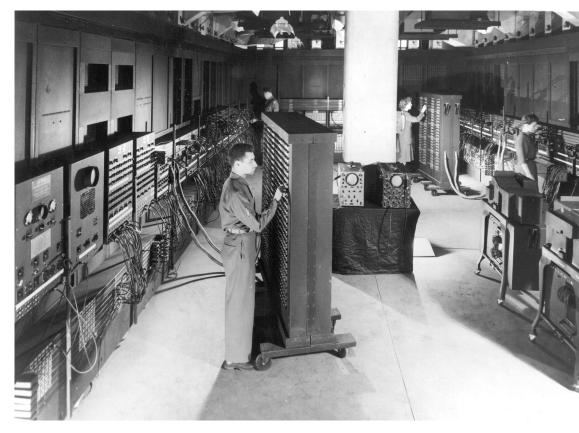

Women, 1990-2015


Jessica Y Ho, and Arun S Hendi BMJ 2018;362:bmj.k2562


FIRST Water and steam power mechanize production.

Jacob Leupold, Steam Engine, in Theatri Machinarum Hydraulicarum II (1720)

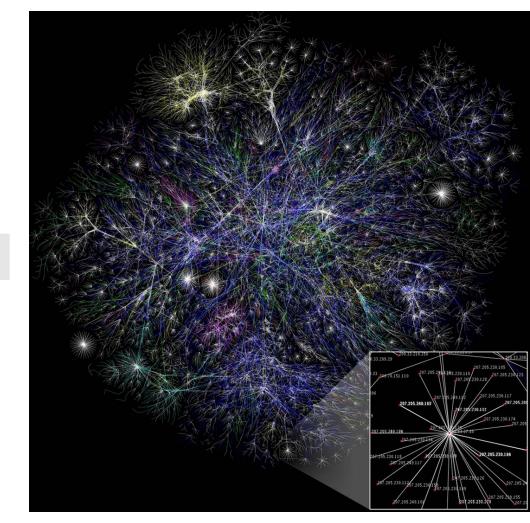
SECOND Electric power creates mass production.



Photographer: Dickenson V. Alley, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=36367226

THIRD

Electronics and information technology automate production.



ENIAC digital computer. Unidentified U.S. Army photographer. Public Domain, https://commons.wikimedia.org/w/index.php?curid=978770

FOURTH

The digital revolution characterized by a fusion of technologies—blurs the lines between physical, digital, and biological spheres.

Opte Project. Internet map. https://commons.wikimedia.org/wiki/File:Internet_map_1024.jpg

HISTORY OF DIGITAL DISRUPTION

Company /Industry	Core Business	Transformational Change	Digital Disruption Enhance Existing Income Model?	Successful Internal Transformation?	Digital Disrupter
Kodak	Photographic Film & Paper	Digital Photography	NO	X	MOTOROLA SHARP SONY
BARNES &NOBLE	Selling Books from Stores	Online Book Orders	NO	X	amazon.com
CHEMICAL	Lending Money	ATMs and Online Banking	YES	\checkmark	All Modern Banks
BLOCKBUSTER VIDEO	Video Rental	Digital Streaming	NO	X	NETFLIX
	Fee-for-Service Health Care	Value-based, Digitally Enabled Medicine	NO	?	?
FUTURE OF PHARMA	Sell more drugs at higher prices	Value based reimbursement	NO	?	?

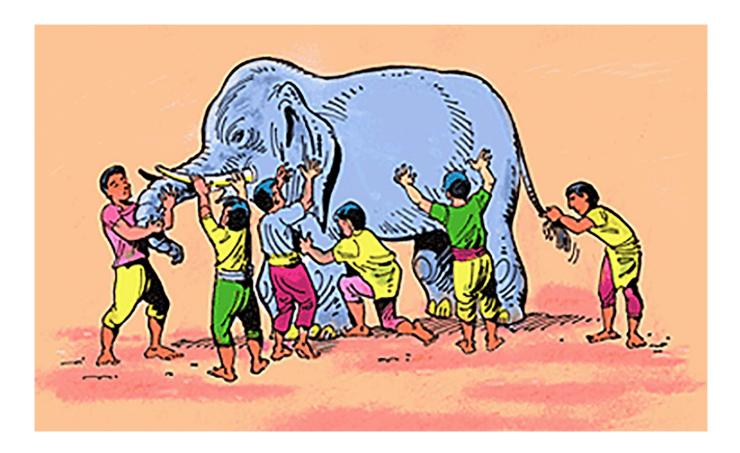
Qualities of the New Data Environment

Volume

-New methods of data storage allow access to huge amounts of data

Ubiquity/Liquidity

—Data are available anywhere across geography, social and economic classes

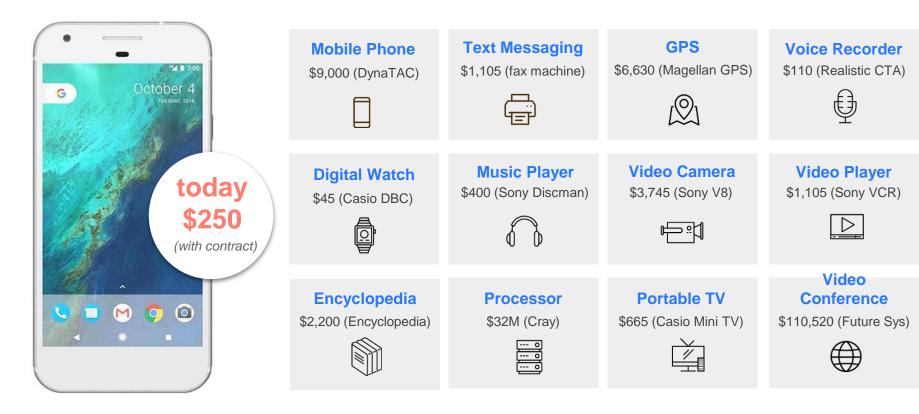

Latency

-There is no delay in access to data inherent in the technology

Analysis

—Data, information, knowledge, wisdom continuum is being shifted to the right

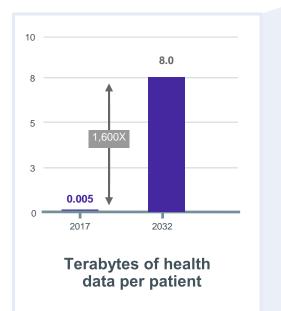
"To learn the truth, we must put all the parts together."

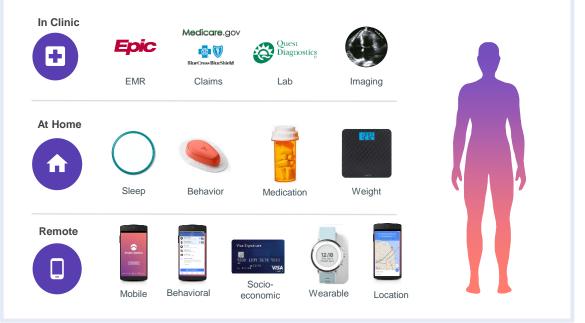



		∷ ≎
G	005	gle
SXSW		
	Ŷ	
SWSX		ě
Remi	od me in 10 minu	itoe

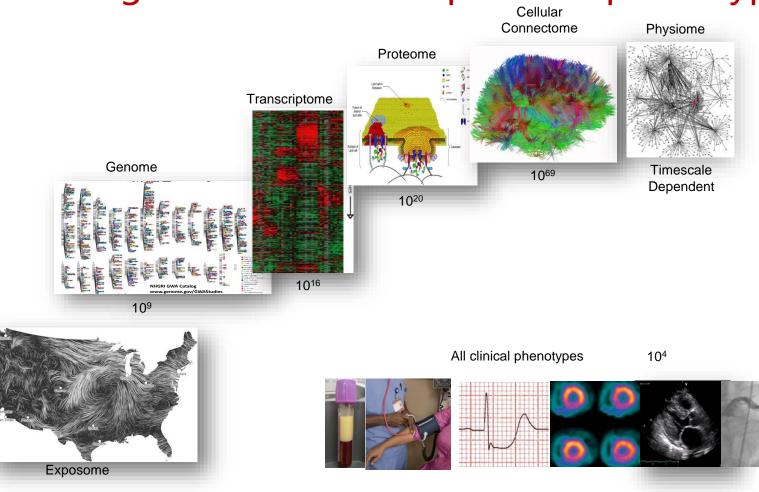
16.3M results in 0.57 second

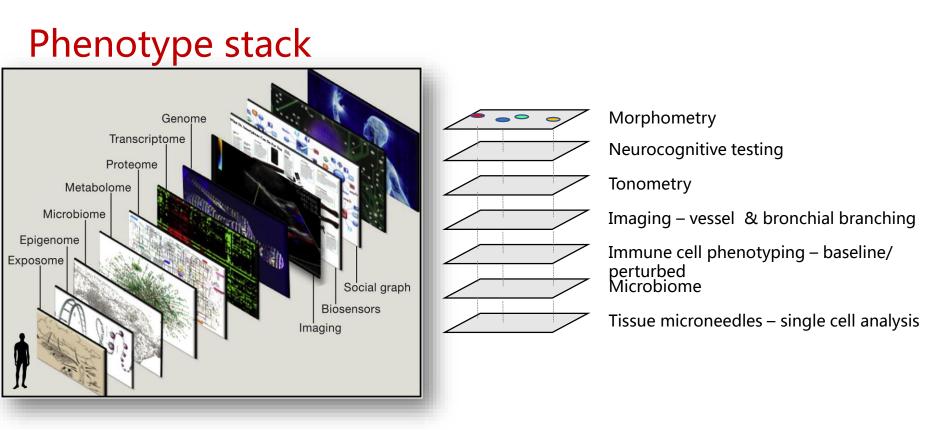
verily Confidential & Proprietary


The cost of a smartphone in 1985: \$32M

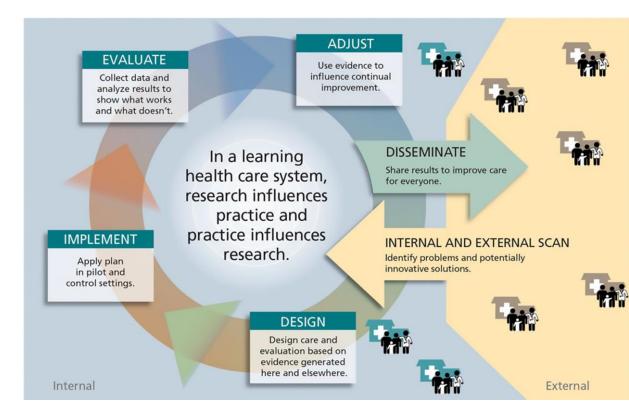


Collecting comprehensive health data

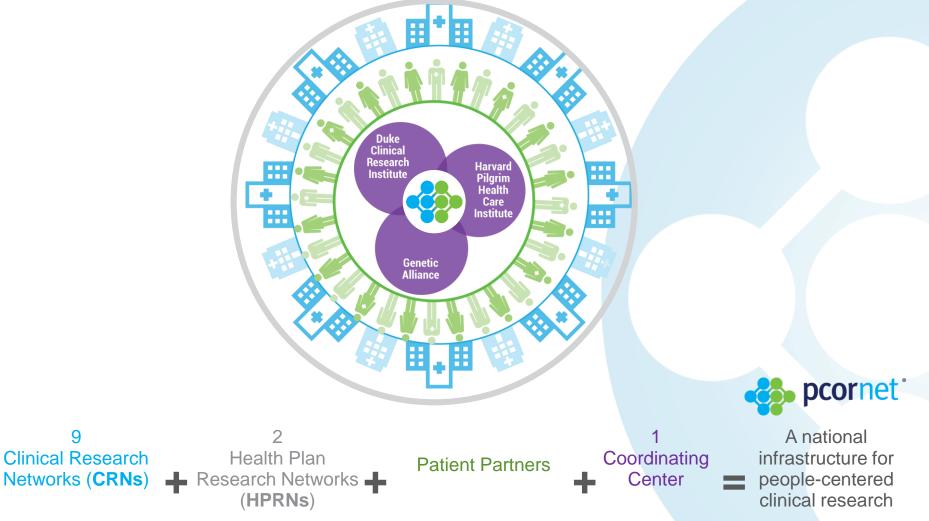

Generate tools and technologies to collect diverse, comprehensive health data in-clinic, at-home, and remotely.


6 TB of collected data on each Project Baseline participant per year

Creating a 'stack' of novel personal phenotypes



- Integration across scales requires new data, new tools, new taxonomy
- Unifying metadata: small molecules, biophysical stimuli
- Breadth vs Depth
- Co-clinical modeling



Learning health care systems

www.fda.gov

PCORnet[®] embodies a "network of networks" that harnesses the power of partnerships

CRNs

ADVANCE Accelerating Data Value Across a National <u>Community Health Center Network</u> (ADVANCE)

Oregon Community Health Information Network (OCHIN)

<u>Chicago Area Patient Centered Outcomes</u> <u>Research Network (CAPriCORN)</u> The Chicago Community Trust

Greater Plains Collaborative (GPC) University of Kansas Medical Center

<u>Research Action for Health Network</u> (<u>REACHnet)</u> Louisiana Public Health Institute (LPHI)

Mid-South CDRN Vanderbilt University

National PEDSnet: A Pediatric Learning Health System The Children's Hospital of Philadelphia

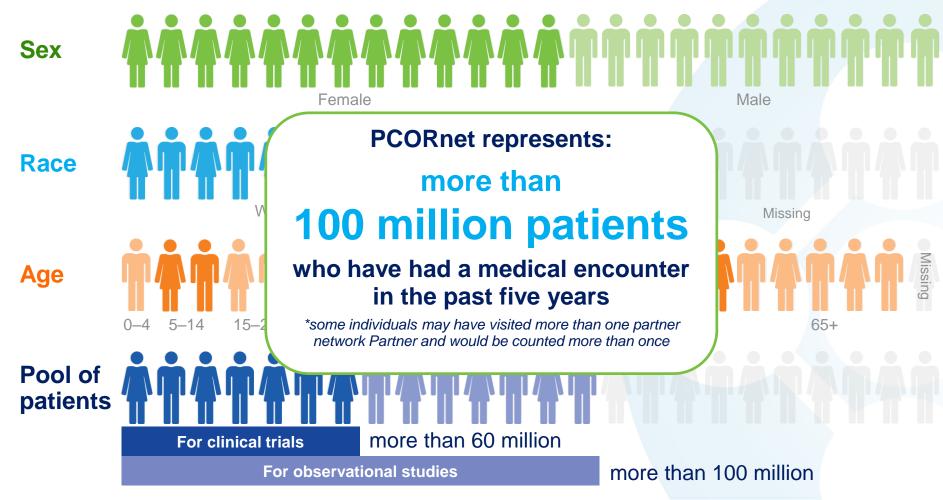
NYC-CDRN New York City Clinical Data Research Network New York City Clinical Data Research Network (NYC-CDRN) Weill Medical College of Cornell University

OneFlorida Clinical Data Research Network
 University of Florida

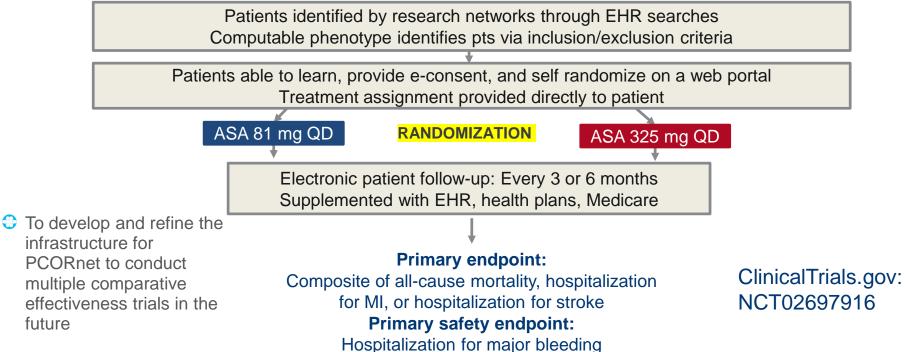
PaTH: Towards a Learning Health System University of Pittsburgh

HPRNs

HealthCore (a subsidiary of Anthem)


Humana Comprehensive Health Insights®

<u>Humana – Comprehensive Health Insights</u> (CHI; a subsidiary of Humana Pharmacy Solutions)

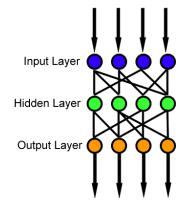

Resulting in a national evidence system with unparalleled research readiness

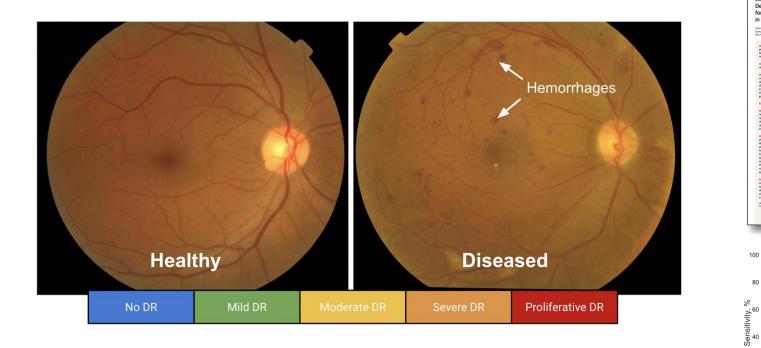
ADAPTABLE Study Design

15,000 patients with known ASCVD + ≥ 1 "enrichment factor"

Site Approach and Enrollment

CDRN	Total Number Eligible	Total Number Approached	% of Eligible Approached	Golden Tickets Entered	% Golden Tickets entered per Approached	Total Enrolled	# Non- internet Enrolled	% Enrolled Per Approached	% Enrolled Per Golden Ticket Entered
CAPriCORN	18,389	12,251	67%	821	7%	516	203	4%	63%
GPC	92,053	62,365	68%	3594	6%	1690	119	3%	47%
HPRN	160,914	160,914	100%	1,551	1%	358	2	0%	23%
LHSNet	128,981	35,342	27%	1493	4%	865	115	2%	58%
Mid-South	92,714	43,629	47%	7,283	17%	3942	491	9%	54%
NYC-CDRN	22,141	6,575	30%	1339	20%	710	253	11%	53%
OneFlorida	59,373	5,220	9%	749	14%	593	154	11%	79%
РаТН	47,594	41,187	87%	3682	9%	1279	58	3%	35%
pScanner	15,669	6,855	44%	253	4%	131	8	2%	52%
REACHnet	33,299	20,583	62%	1801	9%	773	240	4%	43%
TOTAL	671,133	394,921	59%	22,566	6%	10,857	1,643	3%	48%

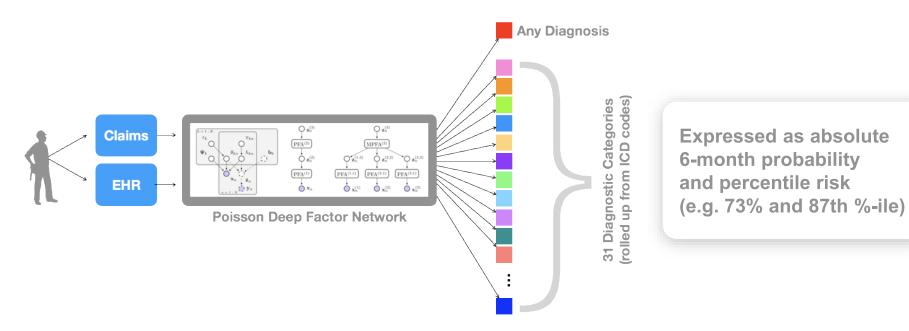

What if a choice made over the counter prevented...



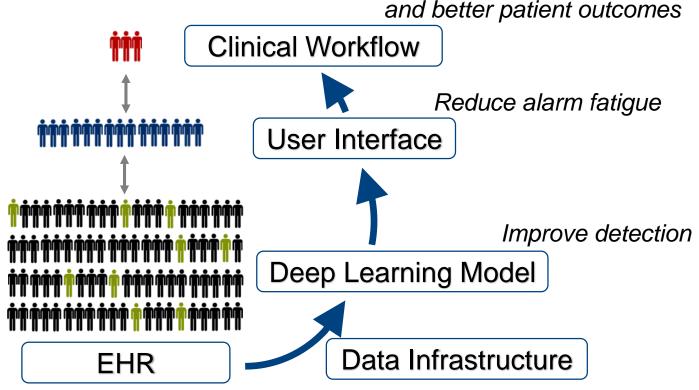
definitions

- Machine learning is a subset of artificial intelligence in the field of computer science that often uses statistical techniques to give computers the ability to "learn" (i.e., progressively improve performance) on a specific task) with data, without being explicitly programmed.
- Artificial neural networks (ANNs) or connectionist systems are computing systems vaguely inspired by the biological neural networks that constitute animal brains. Such systems "learn" to perform tasks by considering examples, generally without being programmed with any task-specific rules.
- Natural language processing (NLP) is an area of computer science and artificial intelligence concerned with the interactions between computers and human (natural) languages, in particular how to program computers to process and analyze large amounts of natural language data.

Innovations jointly deployed by Google + Verily



1 - Specificity, %



Admission Risk Prediction Model

FLAGGING ACUTE INPATIENT ISSUES Shorten time to treatment

"The Boeing 737 Max and the Problems Autopilot Can't Solve" - New York Times

"Trump Laments Modern Airplanes as 'Too Complex to Fly' in Wake of Deadly Crashes" - Chicago Tribune

1 in 20 Google searches are health related

WHY DEPRESSION?

DEPRESSION IS HIGHLY PREVALENT

M

MANY PEOPLE DON'T GET TREATMENT

50%

of people with depression in the US did not get any treatment [JAMA] TREATMENT IS OFTEN DELAYED TREATMENT IS EFFECTIVE

70%

of patients can improve, often in a matter of weeks [<u>NIMH</u>]

people suffer from depression globally, WHO has declared it a leading cau**GOOGIE h**a average time from onset to treatment in

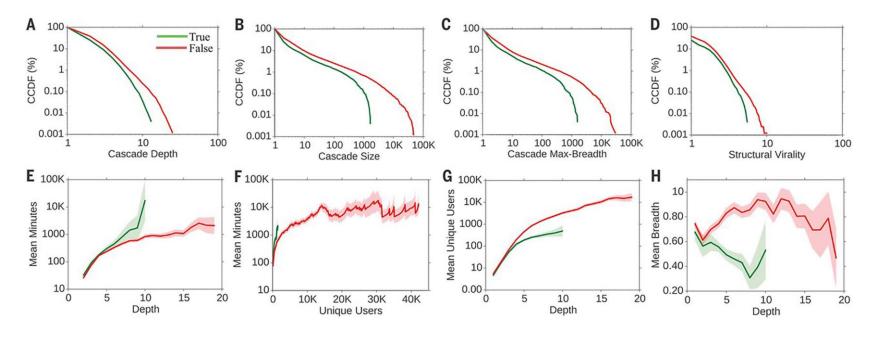
YRS

HO has declared it a the US [<u>JAMA</u>] leading cau**Google has the reach, scale and technology to help** disability [WHO]

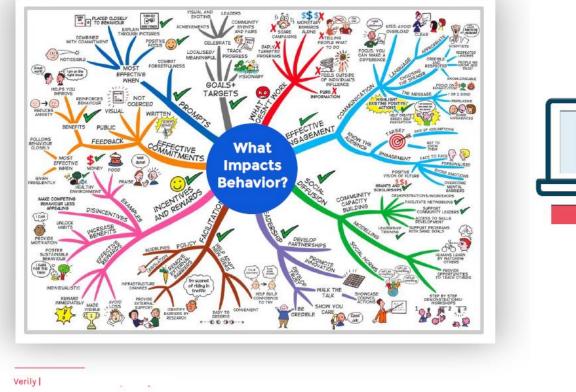
PRODUCT OVERVIEW: What is PHQ-9?

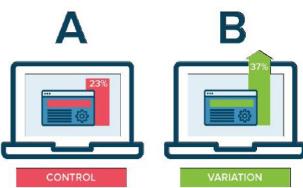
PHQ-9 is a Patient Health Questionnaire, with 9 questions, that is used to measure depression severity

Over the <u>last 2 weeks</u> , how often have you been bothered by any of the following problems?	Not at all	Several days	More than half the days	Nearly every day
1. Little interest or pleasure in doing things	0	1	2	3
2. Feeling down, depressed, or hopeless	0	1	2	3
3. Trouble falling or staying asleep, or sleeping too much	0	1	2	3
4. Feeling tired or having little energy	0	1	2	3
5. Poor appetite or overeating	0	1	2	3
 Feeling bad about yourself — or that you are a failure or have let yourself or your family down 	0	1	2	3
Trouble concentrating on things, such as reading the newspaper or watching television	0	1	2	3
 Moving or speaking so slowly that other people could have noticed? Or the opposite — being so fidgety or restless that you have been moving around a lot more than usual 	0	1	2	3
Thoughts that you would be better off dead or of hurting yourself in some way	0	1	2	3



Krista Kennell / Stone / Catwalker / Shutterstock / The Atlantic https://www.theatlantic.com/technology/archive/2018/03/largest-study-ever-fake-news-mit-twitter/555104/


Complementary cumulative distribution functions (CCDFs) of true and false rumor cascades



Vosoughi S, et al. Science. 2018;359:1146-51.

Data Activation and Testing Outcomes

MAPPING HUMAN HEALTH

Digital transformation

Mapping Human Health

Individual Productivity and IT Silos

- Data on premise, hard to access, analyze and use
- Productivity tools built for individual, local usage
- IT focusing on where it computes

Collective Intelligence and Distributed Computing

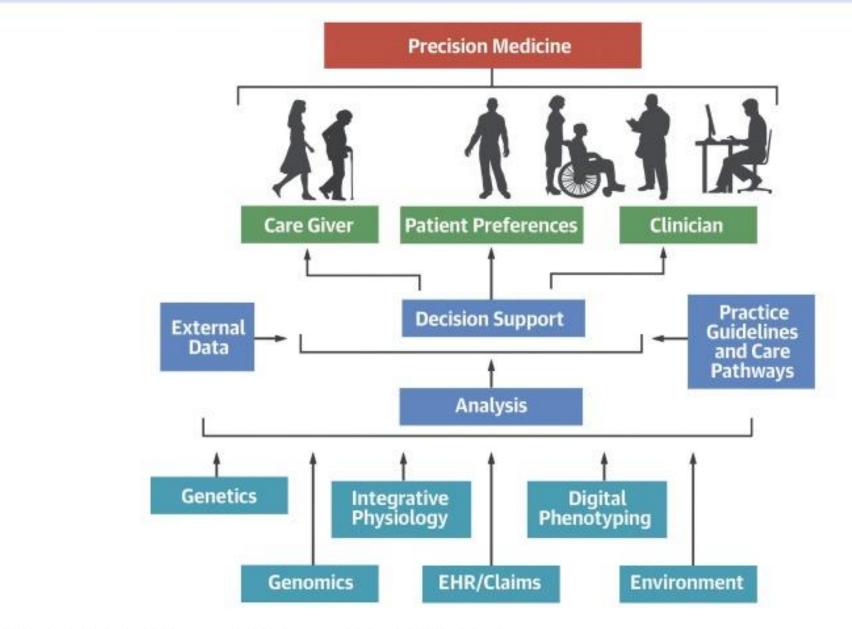
- Data stored in cloud, simple to query
- Collaborative, cloud based productivity
- Machine learning drives deep, actionable insights
- IT changing how it computes

CONCRETE CHANGES DUE TO THE 4TH INDUSTRIAL REVOLUTION

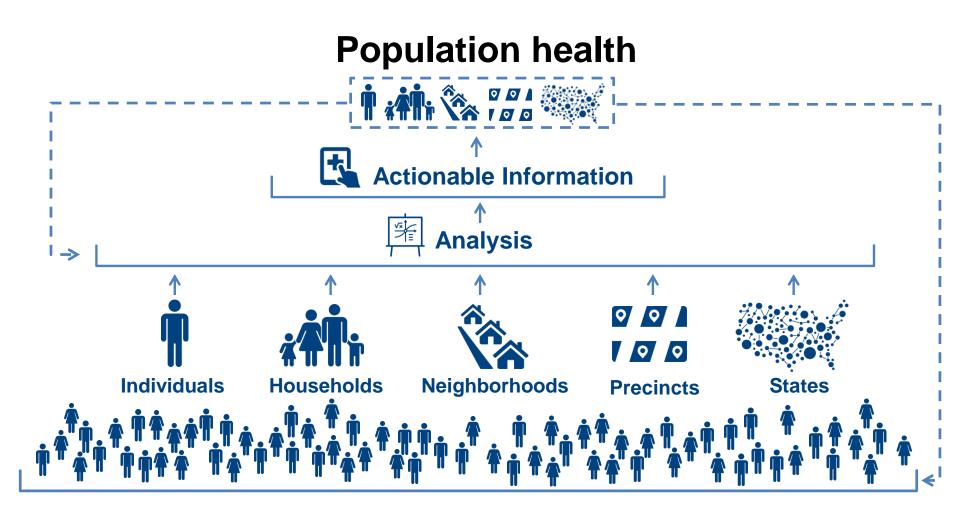
- 1. "Home inversion"—prevention and chronic care will move to the home, school, workplace and neighborhood
- 2. Health care team—function will be optimized to enable members to function at the top of their capability with task shifting to community health workers and nurses for many activities in the home
- 3. Clinic visit preparation—will set up using interactive system at home using sensors, cell phones and chatbots
- 4. Clinic visits—will be virtual in many cases, but when human interaction useful, clinician and patient will talk and interact physically (clinic notes done using NLP and AI)
- 5. Post-clinic visit—information will be available on an asneeded basis, tailored to the needs, health literacy and numeracy of the patient

CONCRETE CHANGES DUE TO THE 4TH INDUSTRIAL REVOLUTION

6. Behavior change—will be reinforced by the digital environment


7. Procedures and surgeries—will be monitored by a digital environment in which ML will be used to guide procedures;

8. Ingestion of data across the spectrum of biology, clinical, imaging, sensors, behavior, social interactions and environment will be routine


9. Precision medicine will stratify people based on risk and knowledge of effective interventions, and personalized medicine will tailor actions to the needs and values of people and families

10. Population health will use the same information aggregated at the level of families, neighborhoods, precincts, towns, counties, states and regions

CENTRAL ILLUSTRATION: Precision Medicine

Califf, R.M. J Am Coll Cardiol. 2018;72(25):3301-9.

